我正在尝试进行批量正态分布测试。
我的数据如下:
"Date","Department","Discipline","Employee ID","SumOfBillable Hrs"
"10/09/2012","D","B",50084.00,8.00
"10/09/2012","D","C",51870.00,10.00
"10/09/2012","D","E",50216.00,10.00
"10/09/2012","D","E",53422.00,9.00
"10/09/2012","D","E",53765.00,10.00
"14/01/2013","E","Y",53146.00,9.00
"14/01/2013","E","Y",53202.00,9.00
"14/01/2013","E","Y",54470.00,9.00
"14/01/2013","SITE","0",54525.00,9.00
"14/02/2013","D","C",51870.00,10.00
"14/02/2013","D","E",50029.00,8.50
"14/02/2013","D","E",50216.00,9.00
"14/02/2013","D","E",53422.00,4.00
我想检查每个Employee_ID
下的小时分布。
有批处理方式吗?
我有80多IDs
。因此,单独拍摄每个ID
并为其绘制/创建描述性统计数据将相当繁琐。
由于
答案 0 :(得分:1)
你可以从这样的事情开始。如果你想要不同的东西,你必须提供更多关于你想要用它做什么的信息。
data <- read.table(header=T, sep=",",
text='"Date","Department","Discipline","Employee ID","SumOfBillable Hrs"
"10/09/2012","D","B",50084.00,8.00
"10/09/2012","D","C",51870.00,10.00
"10/09/2012","D","E",50216.00,10.00
"10/09/2012","D","E",53422.00,9.00
"10/09/2012","D","E",53765.00,10.00
"14/01/2013","E","Y",53146.00,9.00
"14/01/2013","E","Y",53202.00,9.00
"14/01/2013","E","Y",54470.00,9.00
"14/01/2013","SITE","0",54525.00,9.00
"14/02/2013","D","C",51870.00,10.00
"14/02/2013","D","E",50029.00,8.50
"14/02/2013","D","E",50216.00,9.00
"14/02/2013","D","E",53422.00,4.00')
# Means:
aggregate(SumOfBillable.Hrs ~ Employee.ID, data=data, FUN=mean)
# Standard Deviations:
aggregate(SumOfBillable.Hrs ~ Employee.ID, data=data, FUN=sd)
# Or a Shapiro normality test: (only works if you have more than 3 observations per Employee.ID
aggregate(SumOfBillable.Hrs ~ Employee.ID, data=data, FUN=shapiro.test)