最常见的后续差异

时间:2013-02-21 17:46:07

标签: java

我有一个程序,我用Java编写,必须做两件事,找到最长的公共子序列并对齐公共字符。 LCS工作得很好,但对齐部分只是循环或什么都不做。

我尝试使用我在维基百科上找到的算法

function printDiff(C[0..m,0..n], X[1..m], Y[1..n], i, j)
if i > 0 and j > 0 and X[i] = Y[j]
    printDiff(C, X, Y, i-1, j-1)
    print "  " + X[i]
else if j > 0 and (i = 0 or C[i,j-1] ≥ C[i-1,j])
    printDiff(C, X, Y, i, j-1)
    print "+ " + Y[j]
else if i > 0 and (j = 0 or C[i,j-1] < C[i-1,j])
    printDiff(C, X, Y, i-1, j)
    print "- " + X[i]
else
    print ""

这是我写的代码(我删除了LCS部分)

static char[] input1 = "ABCDE".toCharArray();
static char[] input2 = "ACDC".toCharArray();
static int M = input1.length;
static int N = input2.length;
static int[][] opt = new int[M + 1][N + 1];

public static void printDiff(int opt[][], char input1[], char input2[]) {
    int i = 0, j = 0;
    while (i < input1.length && j < input2.length) {
    if (i > 0 && j > 0 && input1[i] == input2[j]) {
        System.out.print("  " + input1[i]);
        i++;
        j++;
    } else if (j > 0 && (i == 0 || opt[i][j - 1] >= opt[i - 1][j])) {
        System.out.print("+ " + input2[j]);
        j++;
    } else if (i > 0 && (j == 0 || opt[i][j - 1] < opt[i - 1][j])) {
        System.out.print("- " + input1[i]);
        i++;
    } else {
        System.out.print("");

    }
    }
}

2 个答案:

答案 0 :(得分:2)

我重写了您的代码以使用Wikipedia algorithm。换句话说,我使用递归而不是where子句。我不得不改变其中一个if条件,因为Java是基于零索引的,而维基百科算法是一个基于索引的。

我必须重新添加LCS功能,以便我可以计算int[][]opt

我在if语句中添加了括号,以确保操作按照我希望它们完成的顺序完成。

我也修正了输出。维基百科算法以"+ ""- "作为输出。这似乎是一个错字。输出应分别为" +"" -"

这是我的代码版本。

public class PrintDiff {

    char[]  input1  = "ABCDE".toCharArray();
    char[]  input2  = "ACDC".toCharArray();
    int     M       = input1.length;
    int     N       = input2.length;

    public void run() {
        int[][] opt = lcsLength(input1, input2);
        printDiff(opt, input1, input2, M - 1, N - 1);
    }

    public int[][] lcsLength(char[] input1, char[] input2) {
        int[][] opt = new int[M][N];
        for (int i = 1; i < input1.length; i++) {
            for (int j = 1; j < input2.length; j++) {
                if (input1[i] == input2[j]) {
                    opt[i][j] = opt[i - 1][j - 1] + 1;
                } else {
                    opt[i][j] = Math.max(opt[i][j - 1], opt[i - 1][j]);
                }
            }
        }
        return opt;
    }

    public void printDiff(int opt[][], char input1[], char input2[], int i,
            int j) {
        if ((i >= 0) && (j >= 0) && (input1[i] == input2[j])) {
            printDiff(opt, input1, input2, i - 1, j - 1);
            System.out.print("  " + input1[i]);
        } else if ((j > 0) && ((i == 0) || (opt[i][j - 1] >= opt[i - 1][j]))) {
            printDiff(opt, input1, input2, i, j - 1);
            System.out.print(" +" + input2[j]);
        } else if ((i > 0) && ((j == 0) || (opt[i][j - 1] < opt[i - 1][j]))) {
            printDiff(opt, input1, input2, i - 1, j);
            System.out.print(" -" + input1[i]);
        } else {
            System.out.print("");
        }
    }

    public static void main(String[] args) {
        new PrintDiff().run();
    }

}

这是我的输出。

  A -B  C  D -E +C

答案 1 :(得分:1)

这是一个返回所有最常见公共子序列的差异的版本(基本上是使用缓存表的回溯 - 类似于获取All Longest Common Subsequences中所有最长公共子序列的方法)(或者,您可以参考到我的博客@:http://codingworkout.blogspot.com/2014/07/longest-common-subsequence.html

例如,对于GAC和AGCAT,它返回=&gt; {{&#34; [G] [A] C&#34;,&#34; [G] A [C]&#34;,&#34; G [A] [C]&#34; },{&#34; A [G] C [A] T&#34;,&#34; A [G] [C] AT&#34;,&#34; [A] G [C] AT&#34其中GA,GC和AC是最常见的子序列......

string[][] GetDiffs(string A, string B, int aIndex, int bIndex,
            int[][] DP_LCS_AllPrefixes_Cache)
        {
            if((aIndex == 0) && (bIndex ==0))
            {
                return null;
            }
            if (DP_LCS_AllPrefixes_Cache[aIndex][bIndex] == 0)
            {
                var r = new string[2][];
                r[0] = new string[] { A.Substring(0, aIndex) };
                r[1] = new string[] { B.Substring(0, bIndex) };
                return r;
            }
            if (A[aIndex - 1] == B[bIndex - 1])
            {
                var r = this.GetDiffs(A, B, aIndex - 1, bIndex - 1,
                    DP_LCS_AllPrefixes_Cache);
                string ch = string.Format("[{0}]", A[aIndex - 1]);
                if (r == null)
                {
                    r = new string[2][];
                    r[0] = new string[] { ch };
                    r[1] = new string[] { ch };
                }
                else
                {
                    r[0] = r[0].Select(s => s + ch).ToArray();
                    r[1] = r[1].Select(s => s + ch).ToArray();
                }
                return r;
            }
            int lcs_up_direction = DP_LCS_AllPrefixes_Cache[aIndex - 1][bIndex];
            int lcs_left_direction = DP_LCS_AllPrefixes_Cache[aIndex][bIndex - 1];
            string[][] lcs_up = null, lcs_left = null;
            if (lcs_up_direction == lcs_left_direction)
            {
                lcs_up = this.GetDiffs(A, B, aIndex - 1, bIndex,
                    DP_LCS_AllPrefixes_Cache);
                lcs_left = this.GetDiffs(A, B, aIndex, bIndex - 1,
                    DP_LCS_AllPrefixes_Cache);
            }
            else if (lcs_up_direction > lcs_left_direction)
            {
                lcs_up = this.GetDiffs(A, B, aIndex - 1, bIndex,
                    DP_LCS_AllPrefixes_Cache);
            }
            else
            {
                lcs_left = this.GetDiffs(A, B, aIndex, bIndex - 1, DP_LCS_AllPrefixes_Cache);
            }
            char a = A[aIndex - 1], b = B[bIndex - 1];
            string[][] rl = new string[2][];
            rl[0] = new string[0];
            rl[1] = new string[0];
            if(lcs_up != null)
            {
                //we moved upward, that is we accepted that they differ with 'A' at aIndex-1 (a)
                rl[0] = lcs_up[0].Select(s => s + a.ToString()).ToArray();
                rl[1] = lcs_up[1];
            }
            if (lcs_left != null)
            {
                //we moved left, that is we accepted that they differ with 'B' at bIndex-1 (b)
                rl[0] = rl[0].Union(lcs_left[0]).ToArray(); ;
                rl[1] = rl[1].Union(lcs_left[1].Select(s => s + b.ToString())).ToArray();
            }
            return rl.ToArray();
        }

来电者

string[][] GetDiffs(string A, string B, int[][] DP_LCS_AllPrefixes_Cache)
        {
            var r = this.GetDiffs(A, B, A.Length, B.Length,
                DP_LCS_AllPrefixes_Cache);
            return r;
        }

捕获LCS长度以回溯的DP方法

public int[][] LCS_OfAllPrefixes_Length(string A, string B)
        {
            A.ThrowIfNullOrWhiteSpace("a");
            B.ThrowIfNullOrWhiteSpace("b");
            int[][] DP_LCS_AllPrefixes_Cache = new int[A.Length+1][];
            for(int i = 0;i<DP_LCS_AllPrefixes_Cache.Length; i++)
            {
                DP_LCS_AllPrefixes_Cache[i] = new int[B.Length + 1];
            }
            for (int rowIndexOfCache = 1; rowIndexOfCache <= A.Length; rowIndexOfCache++)
            {
                for (int columnIndexOfCache = 1; columnIndexOfCache <= B.Length; columnIndexOfCache++)
                {
                     //LCS(Ai, Bj) = 0 if i <=0, or j <= 0
                     //              LCS(Ai, Bj) + 1 if Ai == Bj
                     //              Max(LCS(Ai-1, Bj), LCS(Ai, Bj-1))
                    if(A[rowIndexOfCache-1] == B[columnIndexOfCache-1])
                    {
                        DP_LCS_AllPrefixes_Cache[rowIndexOfCache][columnIndexOfCache] = DP_LCS_AllPrefixes_Cache[rowIndexOfCache - 1][columnIndexOfCache - 1] + 1;
                    }
                    else
                    {
                        DP_LCS_AllPrefixes_Cache[rowIndexOfCache][columnIndexOfCache] = Utilities.Max(DP_LCS_AllPrefixes_Cache[rowIndexOfCache - 1][columnIndexOfCache],
                            DP_LCS_AllPrefixes_Cache[rowIndexOfCache][columnIndexOfCache - 1]);
                    }
                }
            }
            return DP_LCS_AllPrefixes_Cache;
        }

<强> TestMethod的

[TestMethod]
        public void LCS_Tests()
        {
            string A = "GAC", B = "AGCAT";
            var DP_LCS_AllPrefixes_Cache = this.LCS_OfAllPrefixes_Length(A, B);
            Assert.IsTrue(DP_LCS_AllPrefixes_Cache[A.Length][B.Length] == 2);
            var lcs_sequences = this.GetLongestCommonSubsequences(A, B, DP_LCS_AllPrefixes_Cache);
            Assert.IsNotNull(lcs_sequences);
            var diffs = this.GetDiffs(A, B, DP_LCS_AllPrefixes_Cache);
            Assert.IsNotNull(diffs);
            Assert.IsTrue(diffs.Length == 2);
            Assert.IsTrue(diffs[0].Length == lcs_sequences.Length);
            Assert.IsTrue(diffs[1].Length == lcs_sequences.Length);
            Assert.IsTrue(lcs_sequences.Any(s => "AC".Equals(s)));
            Assert.IsTrue(lcs_sequences.Any(s => "GC".Equals(s)));
            Assert.IsTrue(lcs_sequences.Any(s => "GA".Equals(s)));
            var DP_LCS_AllPrefixes_Subsequences_Cache = this.LCS_OfAllPrefixes_Subsequences(A, B);
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Length == 2);
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Subsequences
               .Any(s => "AC".Equals(s)));
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Subsequences
                .Any(s => "GC".Equals(s)));
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Subsequences
                .Any(s => "GA".Equals(s)));
            A = "ABCDGH"; B = "AEDFHR";
            DP_LCS_AllPrefixes_Cache = this.LCS_OfAllPrefixes_Length(A, B);
            Assert.IsTrue(DP_LCS_AllPrefixes_Cache[A.Length][B.Length] == 3);
            lcs_sequences = this.GetLongestCommonSubsequences(A, B, DP_LCS_AllPrefixes_Cache);
            Assert.IsNotNull(lcs_sequences);
            diffs = this.GetDiffs(A, B, DP_LCS_AllPrefixes_Cache);
            Assert.IsNotNull(diffs);
            Assert.IsTrue(diffs.Length == 2);
            Assert.IsTrue(diffs[0].Length == lcs_sequences.Length);
            Assert.IsTrue(diffs[1].Length == lcs_sequences.Length);
            Assert.IsTrue(lcs_sequences.Any(s => "ADH".Equals(s)));
            DP_LCS_AllPrefixes_Subsequences_Cache = this.LCS_OfAllPrefixes_Subsequences(A, B);
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Length == 3);
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Subsequences
                .Any(s => "ADH".Equals(s)));
            A = "AGGTAB"; B = "GXTXAYB";
            DP_LCS_AllPrefixes_Cache = this.LCS_OfAllPrefixes_Length(A, B);
            Assert.IsTrue(DP_LCS_AllPrefixes_Cache[A.Length][B.Length] == 4);
            lcs_sequences = this.GetLongestCommonSubsequences(A, B, DP_LCS_AllPrefixes_Cache);
            Assert.IsNotNull(lcs_sequences);
            diffs = this.GetDiffs(A, B, DP_LCS_AllPrefixes_Cache);
            Assert.IsNotNull(diffs);
            Assert.IsTrue(diffs.Length == 2);
            Assert.IsTrue(diffs[0].Length == 2);
            Assert.IsTrue(diffs[1].Length == lcs_sequences.Length);
            Assert.IsTrue(lcs_sequences.Any(s => "GTAB".Equals(s)));
            DP_LCS_AllPrefixes_Subsequences_Cache = this.LCS_OfAllPrefixes_Subsequences(A, B);
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Length == 4);
            Assert.IsTrue(DP_LCS_AllPrefixes_Subsequences_Cache[A.Length][B.Length].Subsequences
                .Any(s => "GTAB".Equals(s)));
            A = "ABCDEF"; B = "UVWXYZ";
            DP_LCS_AllPrefixes_Cache = this.LCS_OfAllPrefixes_Length(A, B);
            Assert.IsTrue(DP_LCS_AllPrefixes_Cache[A.Length][B.Length] == 0);
            lcs_sequences = this.GetLongestCommonSubsequences(A, B, DP_LCS_AllPrefixes_Cache);
            diffs = this.GetDiffs(A, B, DP_LCS_AllPrefixes_Cache);
            Assert.IsNotNull(diffs);
            Assert.IsTrue(diffs.Length == 2);
            Assert.IsTrue(diffs[0].Length == 1);
            Assert.IsTrue(diffs[1].Length == 1);
        }