cv :: Mat框架和SCILAB

时间:2013-02-19 14:33:37

标签: c++ opencv image-processing scilab

我在opencv中有一个框架我不想使用imwrite()保存,我使用这段代码来提取每个通道并保存它而不是打开这三个文件并首先组合一个新框架是c ++代码:

  .........
  mean_fb.open("d:\\mean_blue",ios::out);
ostream osb(&mean_fb);
mean_fg.open("d:\\mean_green",ios::out);
ostream osg(&mean_fg);
mean_fr.open("d:\\mean_red",ios::out);
ostream  osr(&mean_fr);
resultframe *= 1.0/255.0; // adjusting the colors of the mean value 
for(int row = 0; row < resultframe.rows; row++) {
    for (int col = 0; col < resultframe.cols; col++) {
    //  std::cout << resultframe.at<cv::Vec3f>(row, col)[1] <<std::endl;
        std::cout << resultframe.at<cv::Vec3f>(row, col)[2] <<std::endl;

        //fwrite(&resultframe.at<cv::Vec3f>(row,col )[0],sizeof(float),1,inpR);
        osr<< resultframe.at<cv::Vec3f>(row, col)[0]<<"\n";
        osg<< resultframe.at<cv::Vec3f>(row, col)[1]<<"\n";
        osb<< resultframe.at<cv::Vec3f>(row, col)[2]<<"\n";
    }
}
 .......

保存的文件是正确的所以我用SCILAB打开它们的框架是1920 * 1080,这是SCILAB代码:

  clear 
  clc
  stacksize('max');
  cd 'd:\'
  width = 1080;
  height =1920 ;
  im = zeros(width, height);
     // read the  values of the red channel  

   red  = mgetl('mean_red'); // read the file as  
   red  = matrix(red,[width, height]);
   red  = strtod(red);
   im(:,:,3) = red;//  because opencv defaullt color Model is BGR 
   clear red;  // clear red to get enough stack 



  // read the  values of the green channel  

 green  = mgetl('mean_green'); // read the file as 
 green  = matrix(green,[width,height]);
 green  = strtod(green);
 im(:,:,2) = green;
  clear green;


   // read the  values of the blue channel  

  blue  = mgetl(mean_blue'); // read the file as 
  blue  = matrix(blue,[width, height]);
  blue  = strtod(blue);
  im(:,:,1) =blue ; 
  clear blue;


 imshow(im);/////////////////////////////////////////

这是我得到的条纹图像的一部分enter image description here: 谢谢你的帮助

2 个答案:

答案 0 :(得分:0)

似乎你的宽度和高度参数反转了。图像可能会被转置。

答案 1 :(得分:0)

在Ted W的建议之后,我认为可能我不得不在SCILAB中切换宽度和高度,而不是在c ++中,这样就可以了,如果有人需要它,那么代码就是这样:

mean_fb.open("d:\\mean_blue",ios::out);
ostream osb(&mean_fb);
mean_fg.open("d:\\mean_green",ios::out);
ostream osg(&mean_fg);
mean_fr.open("d:\\mean_red",ios::out);
ostream  osr(&mean_fr);
  adjusting the colors of the mean value 
for (int col = 0; col < resultframe.cols; col++) {
    for(int row = 0; row < resultframe.rows; row++) {
    //  std::cout << resultframe.at<cv::Vec3f>(row, col)[1] <<std::endl;
        std::cout << resultframe.at<cv::Vec3f>(row, col)[2] <<std::endl;

        //fwrite(&resultframe.at<cv::Vec3f>(row,col )[0],sizeof(float),1,inpR);
        osb<< resultframe.at<cv::Vec3f>(row, col)[0]<<"\n";
        osg<< resultframe.at<cv::Vec3f>(row, col)[1]<<"\n";
        osr<< resultframe.at<cv::Vec3f>(row, col)[2]<<"\n";
    }
}
mean_fb.close();
mean_fr.close();
mean_fg.close();


std_fb.open("d:\\std_blue",ios::out);
ostream std_osb(&std_fb);
std_fg.open("d:\\std_green",ios::out);
ostream std_osg(&std_fg);
std_fr.open("d:\\std_red",ios::out);
ostream  std_osr(&std_fr);

for (int col = 0; col < deviationframe.cols; col++)   {
    for(int row = 0; row < deviationframe.rows; row++) {

        std::cout << deviationframe.at<cv::Vec3f>(row, col)[2] <<std::endl;
        std_osb<< deviationframe.at<cv::Vec3f>(row, col)[0]<<"\n";
        std_osg<< deviationframe.at<cv::Vec3f>(row, col)[1]<<"\n";
        std_osr<< deviationframe.at<cv::Vec3f>(row, col)[2]<<"\n";
    }
}
std_fb.close();
std_fr.close();
std_fg.close();