我有一个filename ='fn'的文件,我正在阅读如下:
age CALCIUM CREATININE GLUCOSE
64.3573 1.1 488
69.9043 8.1 1.1 472
65.6633 8.6 0.8 461
50.3693 8.1 1.3 418
57.0334 8.7 0.8 NEG
81.4939 1.1 NEG
56.954 9.8 1
76.9298 9.1 0.8 NEG
> tmpData = read.table(fn, header = TRUE, sep= "\t" , na.strings = c('', 'NA', '<NA>'), blank.lines.skip = TRUE)
> tmpData
age CALCIUM CREATININE GLUCOSE
1 64.3573 NA 1.1 488
2 69.9043 8.1 1.1 472
3 65.6633 8.6 0.8 461
4 50.3693 8.1 1.3 418
5 57.0334 8.7 0.8 NEG
6 81.4939 NA 1.1 NEG
7 56.9540 9.8 1.0 <NA>
8 76.9298 9.1 0.8 NEG
如上所述读取文件,将缺失值替换为NA和&lt; NA>。我猜“葡萄糖”栏被视为因素。是否有一种简单的方法来解释&lt; NA>作为实际NA并将任何非数字值转换为NA(在此示例中为NEG为NA)
答案 0 :(得分:4)
您可以利用as.numeric
将非数字值强制转换为NA
这一事实。换句话说,尝试这样的事情:
这是您的数据:
temp <- structure(list(age = c(64.3573, 69.9043, 65.6633, 50.3693, 57.0334,
81.4939, 56.954, 76.9298), CALCIUM = c(1.1, 8.1, 8.6, 8.1, 8.7,
1.1, 9.8, 9.1), CREATININE = c(NA, 1.1, 0.8, 1.3, 0.8, NA, 1,
0.8), GLUCOSE = structure(c(5L, 4L, 3L, 2L, 6L, 6L, 1L, 6L), .Label = c("",
"418", "461", "472", "488", "NEG"), class = "factor")), .Names = c("age",
"CALCIUM", "CREATININE", "GLUCOSE"), class = "data.frame", row.names = c(NA,
-8L))
目前的结构:
str(temp)
# 'data.frame': 8 obs. of 4 variables:
# $ age : num 64.4 69.9 65.7 50.4 57 ...
# $ CALCIUM : num 1.1 8.1 8.6 8.1 8.7 1.1 9.8 9.1
# $ CREATININE: num NA 1.1 0.8 1.3 0.8 NA 1 0.8
# $ GLUCOSE : Factor w/ 6 levels "","418","461",..: 5 4 3 2 6 6 1 6
将最后一列转换为数字,但由于它是一个因素,我们需要先将其转换为字符。注意警告。我们真的很高兴。
temp$GLUCOSE <- as.numeric(as.character(temp$GLUCOSE))
# Warning message:
# NAs introduced by coercion
结果:
temp
# age CALCIUM CREATININE GLUCOSE
# 1 64.3573 1.1 NA 488
# 2 69.9043 8.1 1.1 472
# 3 65.6633 8.6 0.8 461
# 4 50.3693 8.1 1.3 418
# 5 57.0334 8.7 0.8 NA
# 6 81.4939 1.1 NA NA
# 7 56.9540 9.8 1.0 NA
# 8 76.9298 9.1 0.8 NA
为了好玩,这里有一个小功能,我提供了另一种方法:
makemeNA <- function (mydf, NAStrings, fixed = TRUE) {
if (!isTRUE(fixed)) {
mydf[] <- lapply(mydf, function(x) gsub(NAStrings, "", x))
NAStrings <- ""
}
mydf[] <- lapply(mydf, function(x) type.convert(
as.character(x), na.strings = NAStrings))
mydf
}
此功能允许您指定正则表达式以标识NA
值应该是什么。我还没有真正测试过,所以 使用正则表达式功能需要您自担风险 !
使用与上面相同的“temp”对象,尝试这些以查看函数的作用:
# Change anything that is just text to NA
makemeNA(temp, "[A-Za-z]", fixed = FALSE)
# Change any exact matches with "NEG" to NA
makemeNA(temp, "NEG")
# Change any matches with 3-digit integers to NA
makemeNA(temp, "^[0-9]{3}$", fixed = FALSE)