我想通过颜色深度缩放来执行色彩还原。
喜欢这个例子:
第一张图片是CGA分辨率,第二张是EGA,第三张是HAM。 我想用cv :: LUT来做,因为我认为这样做更好。 我可以使用以下代码处理灰度:
Mat img = imread("test1.jpg", 0);
uchar* p;
Mat lookUpTable(1, 256, CV_8U);
p = lookUpTable.data;
for( int i = 0; i < 256; ++i)
p[i] = 16 * (i/16)
LUT(img, lookUpTable, reduced);
原:
颜色减少:
但是如果我尝试用颜色做的话我会得到奇怪的结果..
使用此代码:
imgColor = imread("test1.jpg");
Mat reducedColor;
int n = 16;
for (int i=0; i<256; i++) {
uchar value = floor(i/n) * n;
cout << (int)value << endl;
lut.at<Vec3b>(i)[2]= (value >> 16) & 0xff;
lut.at<Vec3b>(i)[1]= (value >> 8) & 0xff;
lut.at<Vec3b>(i)[0]= value & 0xff;
}
LUT(imgColor, lut, reducedColor);
答案 0 :(得分:3)
你现在可能已经开始了,但问题的根源在于你正在向uchar value
进行16位移位,这只是8位长。在这种情况下,即使是8位移位也是如此,因为您将擦除uchar
中的所有位。然后有一个事实是cv::LUT
documentation明确指出src
必须是“8位元素的输入数组”,这在你的代码中显然不是这样。最终结果是只有彩色图像的第一个通道(蓝色通道)被cv::LUT
转换。
解决这些限制的最佳方法是跨通道分割彩色图像,分别转换每个通道,然后将转换后的通道合并为新的彩色图像。请参阅以下代码:
/*
Calculates a table of 256 assignments with the given number of distinct values.
Values are taken at equal intervals from the ranges [0, 128) and [128, 256),
such that both 0 and 255 are always included in the range.
*/
cv::Mat lookupTable(int levels) {
int factor = 256 / levels;
cv::Mat table(1, 256, CV_8U);
uchar *p = table.data;
for(int i = 0; i < 128; ++i) {
p[i] = factor * (i / factor);
}
for(int i = 128; i < 256; ++i) {
p[i] = factor * (1 + (i / factor)) - 1;
}
return table;
}
/*
Truncates channel levels in the given image to the given number of
equally-spaced values.
Arguments:
image
Input multi-channel image. The specific color space is not
important, as long as all channels are encoded from 0 to 255.
levels
The number of distinct values for the channels of the output
image. Output values are drawn from the range [0, 255] from
the extremes inwards, resulting in a nearly equally-spaced scale
where the smallest and largest values are always 0 and 255.
Returns:
Multi-channel images with values truncated to the specified number of
distinct levels.
*/
cv::Mat colorReduce(const cv::Mat &image, int levels) {
cv::Mat table = lookupTable(levels);
std::vector<cv::Mat> c;
cv::split(image, c);
for (std::vector<cv::Mat>::iterator i = c.begin(), n = c.end(); i != n; ++i) {
cv::Mat &channel = *i;
cv::LUT(channel.clone(), table, channel);
}
cv::Mat reduced;
cv::merge(c, reduced);
return reduced;
}
答案 1 :(得分:0)
i
和n
都是整数,因此i/n
是整数。也许您希望在发言之前将其转换为加倍((double)i/n
)并乘以n
?