无法让OpenGL中的Gouraud Shading工作

时间:2013-02-10 09:26:48

标签: c++ opengl gouraud

由于光源,我试图让形状有一些阴影,但我希望形状都是一种颜色。

我的问题是,无论我怎么努力,我似乎​​都无法在奇异的颜色模型上得到任何阴影。我已将模型简化为单个三角形,以使此示例更清晰:

#include <GL/glut.h>
#include <math.h>
#include <iostream>

#include<map>
#include<vector>

using namespace std;

/* Verticies for simplified demo */
float vertices[][3] = {
            {0.1, 0.1, 0.1},
            {0.2, 0.8, 0.3},
            {0.3, 0.5, 0.5},
            {0.8, 0.2, 0.1},
           };
const int VERTICES_SIZE = 4;
/* Polygons for simplified demo */
int polygon[][3] = {
                {0, 1, 3},
                {0, 2, 1},
                {0, 3, 2},
                {1, 2, 3},
            };
const int POLYGON_SIZE = 4;
/* Average point for looking at */
float av_point[3];

/*
 * Holds the normal for each vertex calculated by averaging the
 * planar normals that each vertex is connected to.
 * It holds {index_of_vertex_in_vertices : normal}
 */
map<int, float*> vertex_normals;

/*
 * Calculates average point in list of vertices
 * Stores in result
 */
void averagePoint(float vertices[][3], int length, float result[3]) {
  for(int i = 0; i < length; i++) {
    result[0] += vertices[i][0];
    result[1] += vertices[i][1];
    result[2] += vertices[i][2];
  }

  result[0] /= length;
  result[1] /= length;
  result[2] /= length;
}

/*
 * Performs inplace normalisation of vector v
 */
void normalise(float v[3]) {
  GLfloat length = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
  v[0] /= length;
  v[1] /= length;
  v[2] /= length;
}

/*
 * Performs cross product of vectors u and v and stores
 * result in result
 * Normalises result.
 */
void crossProduct(float u[], float v[], float result[]) {
  result[0] = u[1] * v[2] - u[2] * v[1];
  result[1] = u[2] * v[0] - u[0] * v[2];
  result[2] = u[0] * v[1] - u[1] * v[0];
}

/*
 * Calculates normal for plane
 */
void calculate_normal(int polygon[3], float vertices[][3], float normal[3]) {
  GLfloat u[3], v[3];
  for (int i = 0; i < 3; i++) {
    u[i] = vertices[polygon[0]][i] - vertices[polygon[1]][i];
    v[i] = vertices[polygon[2]][i] - vertices[polygon[1]][i];
  }

  crossProduct(u, v, normal);
  normalise(normal);
}

/*
 * Populates vertex_normal with it's averaged face normal
 */
void calculate_vertex_normals (map<int, float*> &vertex_normal){
  map<int, vector<int> > vertex_to_faces;
  map<int, float*> faces_to_normal;
  // Loop over faces
  for (int i = 0; i < POLYGON_SIZE; i++) {
    float* normal = new float[3];
    calculate_normal(polygon[i], vertices, normal);
    for (int j = 0; j < 3; j++) {
     vertex_to_faces[polygon[i][j]].push_back(i);
    }
    faces_to_normal[i] = normal;
  }


  vertex_normal.clear();
  // Loop over vertices
  for (int v = 0; v < VERTICES_SIZE; v++) {
    vector<int> faces = vertex_to_faces[v];
    int faces_count = 0;
    float* normal = new float[3];
    for (vector<int>::iterator it = faces.begin(); it != faces.end(); ++it){
      normal[0] += faces_to_normal[*it][0];
      normal[1] += faces_to_normal[*it][1];
      normal[2] += faces_to_normal[*it][2];
      faces_count++;
    }
    normal[0] /= faces_count;
    normal[1] /= faces_count;
    normal[2] /= faces_count;
    vertex_normal[v] = normal;
  }

  // Delete normal declared in first loop
  for (int i = 0; i < POLYGON_SIZE; i++) {
    delete faces_to_normal[i];
  }
}

/*
 * Draws polygons in polygon array.
 */
void draw_polygon() {
  for(int i = 0; i < POLYGON_SIZE; i++) {
    glBegin(GL_POLYGON);
    for(int j = 0; j < 3; j++) {
      glNormal3fv(vertex_normals[polygon[i][j]]);
      glVertex3fv(vertices[polygon[i][j]]);
    }
    glEnd();
  }
}


/*
 * Sets up lighting and material properties
 */
void init()
{
  // Calculate average point for looking at
  averagePoint(vertices, VERTICES_SIZE, av_point);

  // Calculate vertices average normals
  calculate_vertex_normals(vertex_normals);

  glClearColor (0.0, 0.0, 0.0, 0.0);
  cout << "init" << endl;

  // Intialise and set lighting parameters
  GLfloat light_pos[] = {1.0, 1.0, 1.0, 0.0};
  GLfloat light_ka[] = {0.2, 0.2, 0.2, 1.0};
  GLfloat light_kd[] = {1.0, 1.0, 1.0, 1.0};
  GLfloat light_ks[] = {1.0, 1.0, 1.0, 1.0};

  glLightfv(GL_LIGHT0, GL_POSITION, light_pos);
  glLightfv(GL_LIGHT0, GL_AMBIENT,  light_ka);
  glLightfv(GL_LIGHT0, GL_DIFFUSE,  light_kd);
  glLightfv(GL_LIGHT0, GL_SPECULAR, light_ks);

  // Initialise and set material parameters
  GLfloat material_ka[] = {1.0, 1.0, 1.0, 1.0};
  GLfloat material_kd[] = {0.43, 0.47, 0.54, 1.0};
  GLfloat material_ks[] = {0.33, 0.33, 0.52, 1.0};
  GLfloat material_ke[] = {0.0, 0.0, 0.0, 0.0};
  GLfloat material_se[] = {10.0};

  glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT,  material_ka);
  glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE,  material_kd);
  glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR,  material_ks);
  glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION,  material_ke);
  glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, material_se);

  // Smooth shading
  glShadeModel(GL_SMOOTH);

  // Enable lighting
  glEnable (GL_LIGHTING);
  glEnable (GL_LIGHT0);

  // Enable Z-buffering
  glEnable(GL_DEPTH_TEST);
}

/*
 * Free's resources
 */
void destroy() {
  for (int i = 0; i < VERTICES_SIZE; i++) {
    delete vertex_normals[i];
  }
}

/*
 * Display simple polygon
 */
void display (){
  glClear  (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  draw_polygon();
  glutSwapBuffers();
}

/*
 * Sets up camera perspective and view point
 * Looks at average point in model.
 */
void reshape (int w, int h)
{
  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  gluPerspective(70, 1.0, 0.1, 1000);
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
  gluLookAt(0, 0, 1, av_point[0], av_point[1], av_point[2], 0, 0.5, 0);
}

int main (int argc, char **argv)
{

  // Initialize graphics window
  glutInit(&argc, argv);
  glutInitWindowSize(256, 256);
  glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE);

  // Initialize OpenGL
  init();

  glutCreateWindow("Rendering");
  glutDisplayFunc(display);
  glutReshapeFunc(reshape);

  glutMainLoop   ();

  destroy();

  return 1;
}

我是OpenGL的新手,所以我希望这很简单。因为我记得设定我的法线所以我不确定还有什么问题。

最终目的是为我的课程渲染一个带有Gouraud阴影(然后是纹理)的面部,但我们几乎已经为自己找出了OpenGL(1.4课程要求),我们不允许使用着色器。 我正在尝试创建类似于此图片的内容(取自Google): enter image description here

我的三角形。

2 个答案:

答案 0 :(得分:5)

  

由于光源造成的阴影,但我希望形状都是一种颜色。

这两个要求是否相互排斥?你期望的结果到底是什么?你能画一幅你想象的画面吗?在实现时,使用着色器比使用大量OpenGL状态机交换机更容易很多

更新

无论如何,这是我修改后的OP代码版本,它绘制了一个受Gourad照明影响的单个三角形。此代码编译并绘制一个带有镜面反射暗示的三角形。

让我们看看我做了什么。首先是三角形的原始设置。没有什么特别的并且没有任何改变(除了一些包括) (EDIT)第二次看我做了一个改变。使用std :: map完全没有计算。我们知道顶点的数量,并且可以预先分配法线的内存。

#include <GL/glut.h>
#include <math.h>

// for memcpy
#include <string.h>

#include <map>
#include <vector>
#include <iostream>

using namespace::std;

/* Verticies for simplified demo */
const int VERTICES_SIZE = 4;
float vertices[VERTICES_SIZE][3] = {
            {0.1, 0.1, 0.1},
            {0.2, 0.8, 0.3},
            {0.3, 0.5, 0.5},
            {0.8, 0.2, 0.1},
           };

// this is now a plain array
float vertex_normals[VERTICES_SIZE][3];

/* Polygons for simplified demo */
const int POLYGON_SIZE = 4;
int polygon[POLYGON_SIZE][3] = {
                {0, 1, 3},
                {0, 2, 1},
                {0, 3, 2},
                {1, 2, 3},
};

/* Average point for looking at */
float av_point[3];

/*
 * Calculates average point in list of vertices
 * Stores in result
 */
void averagePoint(float vertices[][3], int length, float result[3]) {
  for(int i = 0; i < length; i++) {
    result[0] += vertices[i][0];
    result[1] += vertices[i][1];
    result[2] += vertices[i][2];
  }

  result[0] /= length;
  result[1] /= length;
  result[2] /= length;
}

/*
 * Performs inplace normalisation of vector v
 */
void normalise(float v[3]) {
  GLfloat length = sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
  v[0] /= length;
  v[1] /= length;
  v[2] /= length;
}

/*
 * Performs cross product of vectors u and v and stores
 * result in result
 * Normalises result.
 */
void crossProduct(float u[], float v[], float result[]) {
  result[0] = u[1] * v[2] - u[2] * v[1];
  result[1] = u[2] * v[0] - u[0] * v[2];
  result[2] = u[0] * v[1] - u[1] * v[0];
}

/*
 * Calculates normal for plane
 */
void calculate_normal(int polygon[3], float vertices[][3], float normal[3]) {
  GLfloat u[3], v[3];
  for (int i = 0; i < 3; i++) {
    u[i] = vertices[polygon[0]][i] - vertices[polygon[1]][i];
    v[i] = vertices[polygon[2]][i] - vertices[polygon[1]][i];
  }

  crossProduct(u, v, normal);
  normalise(normal);
}

编辑:我的下一个变化就在这里。请参阅评论

/*
 * Populates normals with it's averaged face normal
 *
 * Passing the normal output buffer as a parameter was a bit
 * pointless, as this procedure accesses global variables anyway.
 * Either pass everything as parameters or noting at all,
 * be consequent. And doing it mixed is pure evil.
 */
void calculate_vertex_normals()
{
  // We love RAII, no need for new and delete!
  vector< vector<int> > vertex_to_faces(POLYGON_SIZE);
  vector< vector<float> > faces_to_normal(POLYGON_SIZE);

  // Loop over faces
  for (int i = 0; i < POLYGON_SIZE; i++) {
    vector<float> normal(3);
    calculate_normal(polygon[i], vertices, &normal[0]);
    for (int j = 0; j < 3; j++) {
     vertex_to_faces[polygon[i][j]].push_back(i);
    }
    faces_to_normal[i] = normal;
  }

  // Loop over vertices
  for (int v = 0; v < VERTICES_SIZE; v++) {
    // avoid a copy here by using a reference
    vector<int> &faces = vertex_to_faces[v];
    int faces_count = 0;
    float normal[3];
    for (vector<int>::iterator it = faces.begin(); it != faces.end(); ++it){
      normal[0] += faces_to_normal[*it][0];
      normal[1] += faces_to_normal[*it][1];
      normal[2] += faces_to_normal[*it][2];
      faces_count++;
    }
    // dividing a vector obtained by a number of unit length vectors
    // summed by the number of unit vectors summed does not normalize
    // it. You need to normalize it properly!
    normalise(normal);

    // memcpy is really be best choice here
    memcpy(vertex_normals[v], normal, sizeof(normal));
  }
}

draw_polygon是这个函数的一个相当不愉快的名字。它绘制了一个三角网格。 *编辑:使用顶点数组(自1994年开始使用OpenGL-1.1)可以更好地编写它。

/* 
 * Draws polygons in polygon array.
 */
void draw_polygon() {
  glEnableClientState(GL_VERTEX_ARRAY);
  glEnableClientState(GL_NORMAL_ARRAY);

  glVertexPointer(3, GL_FLOAT, 0, &vertices[0][0]);
  glNormalPointer(GL_FLOAT, 0, &vertex_normals[0][0]);

  glDrawElements(GL_TRIANGLES, POLYGON_SIZE*3, GL_UNSIGNED_INT, polygon);
}

这里变得有趣了。一个常见的误解是,人们认为OpenGL是“初始化的”。事实并非如此。您初始化的是数据。在您的情况下您的几何数据

/*
 * Sets up lighting and material properties
 */
void init_geometry()
{
  // Calculate average point for looking at
  averagePoint(vertices, VERTICES_SIZE, av_point);

  // Calculate vertices average normals
  calculate_vertex_normals(vertex_normals);
}

这是棘手的部分:OpenGL固定功能照明是一种状态,就像其他一切一样。当你调用glLightfv时,它会在被调用时根据状态设置内部参数。调用此模型时,模型视图会转换该位置。但是如果没有设置正确的模型视图,则无法设置照明。因此我把它放到它自己的函数中,我们在绘图函数中设置了modelview后立即调用它。

void setup_illumination()
{
  // Intialise and set lighting parameters
  GLfloat light_pos[] = {1.0, 1.0, 1.0, 0.0};
  GLfloat light_ka[] = {0.2, 0.2, 0.2, 1.0};
  GLfloat light_kd[] = {1.0, 1.0, 1.0, 1.0};
  GLfloat light_ks[] = {1.0, 1.0, 1.0, 1.0};

  glLightfv(GL_LIGHT0, GL_POSITION, light_pos);
  glLightfv(GL_LIGHT0, GL_AMBIENT,  light_ka);
  glLightfv(GL_LIGHT0, GL_DIFFUSE,  light_kd);
  glLightfv(GL_LIGHT0, GL_SPECULAR, light_ks);

  // Initialise and set material parameters
  GLfloat material_ka[] = {1.0, 1.0, 1.0, 1.0};
  GLfloat material_kd[] = {0.43, 0.47, 0.54, 1.0};
  GLfloat material_ks[] = {0.33, 0.33, 0.52, 1.0};
  GLfloat material_ke[] = {0.0, 0.0, 0.0, 0.0};
  GLfloat material_se[] = {10.0};

  glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT,  material_ka);
  glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE,  material_kd);
  glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR,  material_ks);
  glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION,  material_ke);
  glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, material_se);

  // Smooth shading
  glShadeModel(GL_SMOOTH);

  // Enable lighting
  glEnable (GL_LIGHTING);
  glEnable (GL_LIGHT0);
}

对于绘图功能,一些事情发生了变化。请参阅代码中的注释

/*
 * Display simple polygon
 */
void display (void)
{
  // float window sizes are usefull for view volume calculations
  //
  // requesting the window dimensions for each drawing iteration
  // is just two function calls. Compare this to the number of function
  // calls a typical application will do for the actual rendering
  // Trying to optimize away those two calls is a fruitless microoptimization
  float const window_width  = glutGet(GLUT_WINDOW_WIDTH);
  float const window_height = glutGet(GLUT_WINDOW_HEIGHT);
  float const window_aspect = window_width / window_height;

  // glViewport operates independent of the projection --
  // another reason to put it into the drawing code
  glViewport(0, 0, window_width, window_height);

  glClearDepth(1.);
  glClearColor (0.0, 0.0, 0.0, 0.0);
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

  // It's a often made mistake to setup projection in the window resize
  // handler. Projection is a drawing state, hence should be set in
  // the drawing code. Also in most programs you will have multiple
  // projections mixed throughout rendering a single frame so there you
  // actually **must** set projection in drawing code, otherwise it
  // wouldn't work.
  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  gluPerspective(70, window_aspect, 1, 100);

  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
  gluLookAt(0, 0, -3, av_point[0], av_point[1], av_point[2], 0, 1, 0);

  // Fixed function pipeline light position setup calls operate on the current
  // modelview matrix, so we must setup the illumination parameters with the
  // modelview matrix at least after the view transformation (look-at) applied.
  setup_illumination();

  // Enable depth testing (z buffering would be enabled/disabled with glDepthMask)
  glEnable(GL_DEPTH_TEST);

  draw_polygon();

  glutSwapBuffers();
}

int main (int argc, char **argv)
{    
  // Initialize graphics window
  glutInit(&argc, argv);
  glutInitWindowSize(256, 256);
  glutInitDisplayMode    (GLUT_DEPTH | GLUT_DOUBLE);

  // we actually have to create a window
  glutCreateWindow("illuination");

  // Initialize geometry
  init_geometry();

  glutDisplayFunc(display);

  glutMainLoop();

  return 0;
}

答案 1 :(得分:0)

你似乎有一个名为vertices的数组(这是正确的拼写),另一个名为verticies的数组,在几个地方(calculate_normal是最明显的例子)。这是一个错误吗?它可能会弄乱你的正常计算,你从第一个数组中取一个坐标,但从另一个不相关的数组中取第二个坐标。