我正在尝试为matplotlib
中的散点图创建一个离散颜色条我有我的x,y数据,每个点都有一个整数标记值,我希望用唯一的颜色表示,例如
plt.scatter(x, y, c=tag)
通常tag会是一个0到20之间的整数,但确切的范围可能会改变
到目前为止,我刚刚使用了默认设置,例如
plt.colorbar()
提供连续的颜色范围。理想情况下,我想要一组n个离散颜色(在这个例子中n = 20)。更好的方法是将标签值设为0以产生灰色,1-20为彩色。
我找到了一些'cookbook'脚本,但它们非常复杂,我不认为它们是解决看似简单问题的正确方法
答案 0 :(得分:73)
您可以使用BoundaryNorm作为散点图的规范化器,轻松创建自定义离散颜色条。古怪的位(在我的方法中)将0显示为灰色。
对于图像,我经常使用cmap.set_bad()并将我的数据转换为numpy蒙面数组。这将更容易使0灰色,但我无法使用散点图或自定义cmap。
作为替代方案,您可以从头开始创建自己的cmap,或者读出现有的cmap并覆盖一些特定的条目。
import numpy as np
import matplotlib as mpl
import matplotlib.pylab as plt
fig, ax = plt.subplots(1, 1, figsize=(6, 6)) # setup the plot
x = np.random.rand(20) # define the data
y = np.random.rand(20) # define the data
tag = np.random.randint(0, 20, 20)
tag[10:12] = 0 # make sure there are some 0 values to show up as grey
cmap = plt.cm.jet # define the colormap
# extract all colors from the .jet map
cmaplist = [cmap(i) for i in range(cmap.N)]
# force the first color entry to be grey
cmaplist[0] = (.5, .5, .5, 1.0)
# create the new map
cmap = mpl.colors.LinearSegmentedColormap.from_list(
'Custom cmap', cmaplist, cmap.N)
# define the bins and normalize
bounds = np.linspace(0, 20, 21)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
# make the scatter
scat = ax.scatter(x, y, c=tag, s=np.random.randint(100, 500, 20),
cmap=cmap, norm=norm)
# create a second axes for the colorbar
ax2 = fig.add_axes([0.95, 0.1, 0.03, 0.8])
cb = plt.colorbar.ColorbarBase(ax2, cmap=cmap, norm=norm,
spacing='proportional', ticks=bounds, boundaries=bounds, format='%1i')
ax.set_title('Well defined discrete colors')
ax2.set_ylabel('Very custom cbar [-]', size=12)
我个人认为,有20种不同的颜色,有点难以阅读具体的价值,但当然这取决于你。
答案 1 :(得分:48)
您可以按照example:
进行操作#!/usr/bin/env python
"""
Use a pcolor or imshow with a custom colormap to make a contour plot.
Since this example was initially written, a proper contour routine was
added to matplotlib - see contour_demo.py and
http://matplotlib.sf.net/matplotlib.pylab.html#-contour.
"""
from pylab import *
delta = 0.01
x = arange(-3.0, 3.0, delta)
y = arange(-3.0, 3.0, delta)
X,Y = meshgrid(x, y)
Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2 - Z1 # difference of Gaussians
cmap = cm.get_cmap('PiYG', 11) # 11 discrete colors
im = imshow(Z, cmap=cmap, interpolation='bilinear',
vmax=abs(Z).max(), vmin=-abs(Z).max())
axis('off')
colorbar()
show()
产生以下图像:
答案 2 :(得分:32)
要设置高于或低于色彩映射范围的值,您需要使用色彩映射的set_over
和set_under
方法。如果要标记特定值,请屏蔽它(即创建一个屏蔽数组),并使用set_bad
方法。 (请查看基色图类的文档:http://matplotlib.org/api/colors_api.html#matplotlib.colors.Colormap)
听起来你想要这样的东西:
import matplotlib.pyplot as plt
import numpy as np
# Generate some data
x, y, z = np.random.random((3, 30))
z = z * 20 + 0.1
# Set some values in z to 0...
z[:5] = 0
cmap = plt.get_cmap('jet', 20)
cmap.set_under('gray')
fig, ax = plt.subplots()
cax = ax.scatter(x, y, c=z, s=100, cmap=cmap, vmin=0.1, vmax=z.max())
fig.colorbar(cax, extend='min')
plt.show()
答案 3 :(得分:31)
上述答案很好,除非它们在色条上没有正确的刻度位置。我喜欢在颜色中间有刻度,以便数字 - >颜色映射更清晰。您可以通过更改matshow调用的限制来解决此问题:
import matplotlib.pyplot as plt
import numpy as np
def discrete_matshow(data):
#get discrete colormap
cmap = plt.get_cmap('RdBu', np.max(data)-np.min(data)+1)
# set limits .5 outside true range
mat = plt.matshow(data,cmap=cmap,vmin = np.min(data)-.5, vmax = np.max(data)+.5)
#tell the colorbar to tick at integers
cax = plt.colorbar(mat, ticks=np.arange(np.min(data),np.max(data)+1))
#generate data
a=np.random.randint(1, 9, size=(10, 10))
discrete_matshow(a)
答案 4 :(得分:10)
这个主题已经很好地涵盖了,但是我想添加一些更具体的内容:我想确保将某个值映射到该颜色(而不是任何颜色)。
这并不复杂,但是花了我一些时间,它可能会帮助其他人避免浪费我很多时间:)
import matplotlib
from matplotlib.colors import ListedColormap
# Let's design a dummy land use field
A = np.reshape([7,2,13,7,2,2], (2,3))
vals = np.unique(A)
# Let's also design our color mapping: 1s should be plotted in blue, 2s in red, etc...
col_dict={1:"blue",
2:"red",
13:"orange",
7:"green"}
# We create a colormar from our list of colors
cm = ListedColormap([col_dict[x] for x in col_dict.keys()])
# Let's also define the description of each category : 1 (blue) is Sea; 2 (red) is burnt, etc... Order should be respected here ! Or using another dict maybe could help.
labels = np.array(["Sea","City","Sand","Forest"])
len_lab = len(labels)
# prepare normalizer
## Prepare bins for the normalizer
norm_bins = np.sort([*col_dict.keys()]) + 0.5
norm_bins = np.insert(norm_bins, 0, np.min(norm_bins) - 1.0)
print(norm_bins)
## Make normalizer and formatter
norm = matplotlib.colors.BoundaryNorm(norm_bins, len_lab, clip=True)
fmt = matplotlib.ticker.FuncFormatter(lambda x, pos: labels[norm(x)])
# Plot our figure
fig,ax = plt.subplots()
im = ax.imshow(A, cmap=cm, norm=norm)
diff = norm_bins[1:] - norm_bins[:-1]
tickz = norm_bins[:-1] + diff / 2
cb = fig.colorbar(im, format=fmt, ticks=tickz)
fig.savefig("example_landuse.png")
plt.show()
答案 5 :(得分:2)
我一直在研究这些想法,这是我的五分钱。它避免了调用BoundaryNorm
以及将norm
指定为scatter
和colorbar
的参数。但是,我找不到消除对matplotlib.colors.LinearSegmentedColormap.from_list
的冗长调用的方法。
某些背景是matplotlib提供了所谓的定性色图,旨在与离散数据一起使用。 Set1
例如具有9种易于区分的颜色,而tab20
可用于20种颜色。使用这些贴图,很自然地使用其前n种颜色来对具有n个类别的散点图进行颜色着色,如以下示例所示。该示例还生成了一个颜色条,其中正确标记了n种离散颜色。
import matplotlib, numpy as np, matplotlib.pyplot as plt
n = 5
from_list = matplotlib.colors.LinearSegmentedColormap.from_list
cm = from_list(None, plt.cm.Set1(range(0,n)), n)
x = np.arange(99)
y = x % 11
z = x % n
plt.scatter(x, y, c=z, cmap=cm)
plt.clim(-0.5, n-0.5)
cb = plt.colorbar(ticks=range(0,n), label='Group')
cb.ax.tick_params(length=0)
产生下面的图像。对n
的调用中的Set1
指定
该色图的前n
种颜色,以及对n
的调用中的末尾from_list
指定使用n
颜色(默认值为256)构建地图。为了使用cm
将plt.set_cmap
设置为默认颜色图,我发现有必要给它命名并注册它,即:
cm = from_list('Set15', plt.cm.Set1(range(0,n)), n)
plt.cm.register_cmap(None, cm)
plt.set_cmap(cm)
...
plt.scatter(x, y, c=z)
答案 6 :(得分:1)
我认为你想看看colors.ListedColormap生成你的色彩映射,或者如果你只需要一个静态色彩映射我一直在研究an app可能会有所帮助。