我需要素数的原始根?

时间:2013-02-01 08:14:09

标签: java

我需要素数的原始根。我写了这段代码,但它有堆大小错误,它不适用于像101这样的大数。我没有任何其他想法来计算原始根。如果你有请帮帮我。我需要这么多。你还有其他算法来计算素数的原始根吗?

static ArrayList<ArrayList<Integer>> list1=new  ArrayList<ArrayList<Integer>>();

private static int primitiveRoot(int prim){

        ArrayList<ArrayList<Integer>>  number=new ArrayList<ArrayList<Integer>>();// this has all sequence numbers of x power of 0 to prime-1
        ArrayList<Integer> sublist=new ArrayList<Integer>();

        for (int x=2;x<prim;x++ ){
            sublist = new ArrayList<Integer>();
            for (int power=0;power<prim-1;power++){
                int i=(int)((Math.pow(x, power))%prim);
                sublist.add(i);     
            }

            number.add(sublist);

        }

        for (int j=0;j<number.size();j++){
                for (int m=0;m<list1.size();m++){
                    if(number.get(j).equals(list1.get(m)) ){// element of number arraylist compare to list1,equality means that we find one of primitive root
                        a=j+2;
                         break;
                    }
                }

        }

        return a;// this is primitive root

    }

list1是一个arraylists的arraylist,它包含1到prime-1之间的所有数字排列。它只适用于7或11等小素数。我增加了堆大小,但它没有效果。

3 个答案:

答案 0 :(得分:0)

Try wikipedia找到算法。

在Java中,计算a^b mod n的快速方法是使用BigInteger,因为它安全且快速。

BigInteger a = new BigInteger("101");
BigInteger res = a.modPow(b, n);

答案 1 :(得分:0)

import java.math.BigInteger;
import java.util.*;

public class PrimitiveRoot {

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int p = in.nextInt();
        int m = p;
        if (isPrime(p)) {
            m = p - 1;
        }
        int primeRoot = 0;
        Map<Integer, Integer> primeFactor = getPrimeFactor(m);
        for (Map.Entry<Integer, Integer> map : primeFactor.entrySet()) {
            primeFactor.put(map.getKey(), m / map.getKey());
        }
        for (int i = 2; i <= m; i++) {
            boolean notPrimeRoot = false;
            Set<Integer> reminder = new HashSet<>();
            for (Map.Entry<Integer, Integer> map : primeFactor.entrySet()) {
                if(BigInteger.valueOf(i).modPow(BigInteger.valueOf(map.getValue()), BigInteger.valueOf(p)).equals(BigInteger.ONE))
                    notPrimeRoot = true;
            }
            if (!notPrimeRoot) {
                primeRoot = i;
                break;
            }
        }
        System.out.println("Prime Root is: " + primeRoot);
    }

    private static boolean isPrime(int p) {
        for (int i = 2; i <= Math.sqrt(p); i++) {
            if (p % i == 0) {
                return false;
            }
        }
        return true;
    }

    private static Map<Integer, Integer> getPrimeFactor(int p) {
        Map<Integer, Integer> map = new HashMap<>();
        while (p % 2 == 0) {
            insertToMap(2, map);
            p /= 2;
        }

        for (int i = 3; i <= Math.sqrt(p); i += 2) {
            while (p % i == 0) {
                insertToMap(i, map);
                p /= i;
            }
        }

        if (p > 2)
            insertToMap(p, map);
        return map;
    }

    private static void insertToMap(int i, Map<Integer, Integer> map) {
        if (map.get(i) != null) {
            map.put(i, map.get(i) + 1);
        } else {
            map.put(i, 1);
        }
    }
}

答案 2 :(得分:-2)

这是一个python版本,用于计算给定数字的所有原始根:D

#David Isaac Pinos
def prime_factors(n):
    i = 2
    factors = []
    while i * i <= n:
        if n % i:
            i += 1
        else:
            n //= i
            factors.append(i)
    if n > 1:
        factors.append(n)
    return factors

N=int(input("Insert number: "))
phi_N=N-1
factor_aux=prime_factors(phi_N)
print(factor_aux)
factor = []
i=0
while(i<len(factor_aux)-1):
    if (factor_aux[i]!=factor_aux[i+1]):
        factor.append(factor_aux[i])
    if (i==(len(factor_aux)-2)):
        factor.append(factor_aux[i+1]) 
    i=i+1
N_factor=len(factor)
print("")
print("")
i=2
a=0
while (i<10):
    print ("*****Evaluating for " , i , ":")
    j=0
    while (j<N_factor):
        tester=int(phi_N/factor[j])
        test= pow(int(i),tester)%int(N)
        print (i, "^" , tester, " mod ", N, "=" , test )
        if (test!=1):
            j=j+1
            if (j==N_factor and a==0):
                print ("********************* ",i, " IS THE PRIMITIVE ROOT OF ",N)
                primitive_root=i
                i=100
        else:
            j=N_factor
    i=i+1


print("All primitive numbers are: ")

i=1
while(i<N):
    print(primitive_root, "^", i, "mod",N,"=",pow(primitive_root,i)%N)
    i=i+1