我遇到了平均移位聚类的麻烦。它的工作速度非常快,当簇数很小时(2,3,4)输出正确的结果,但当簇数增加时,它会失败。
例如,检测到3个群集:
但是当数字增加时,它会失败:
以下是完整的代码清单:
#!/usr/bin/env python
import sys
import logging
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plot
from sklearn.cluster import estimate_bandwidth, MeanShift, get_bin_seeds
from sklearn.datasets.samples_generator import make_blobs
def test_mean_shift():
logging.debug('Generating mixture')
count = 5000
blocks = 7
std_error = 0.5
mixture, clusters = make_blobs(n_samples=count, centers=blocks, cluster_std=std_error)
logging.debug('Measuring bendwith')
bandwidth = estimate_bandwidth(mixture)
logging.debug('Bandwidth: %r' % bandwidth)
mean_shift = MeanShift(bandwidth=bandwidth)
logging.debug('Clustering')
mean_shift.fit(mixture)
shifted = mean_shift.cluster_centers_
guess = mean_shift.labels_
logging.debug('Centers: %r' % shifted)
def draw_mixture(mixture, clusters, output='mixture.png'):
plot.clf()
plot.scatter(mixture[:, 0], mixture[:, 1],
c=clusters,
cmap=plot.cm.coolwarm)
plot.savefig(output)
def draw_mixture_shifted(mixture, shifted, output='mixture_shifted.png'):
plot.clf()
plot.scatter(mixture[:, 0], mixture[:, 1], c='r')
plot.scatter(shifted[:, 0], shifted[:, 1], c='b')
plot.savefig(output)
logging.debug('Drawing')
draw_mixture_shifted(mixture, shifted)
draw_mixture(mixture, guess)
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG)
test_mean_shift()
我做错了什么?
答案 0 :(得分:1)
您可能需要选择较小的带宽。我不太熟悉启发式选择带宽的方式。所以这里的“问题”是启发式算法,而不是实际的算法。