我有一个非常简单的问题。它与计算容差误差有关。
让我(在最后看到)特征向量V和对角特征值D中矩阵A的特征分解,并通过乘法V ^ -1 * D * V再次构建它。
获得的值远不是A,误差很大。
我想知道我是否使用不正确的函数来执行此任务,或者至少如何减少此错误。提前谢谢
in[1]:import numpy
from scipy import linalg
A=matrix([[16,-9,0],[-9,20,-11],[0,-11,11]])
D,V=linalg.eig(A)
D=diagflat(D)
matrix(linalg.inv(V))*matrix(D)*matrix(V)
out[1]:matrix([[ 15.52275377, 9.37603361, 0.79257097],
[9.37603361, 21.12538282, -10.23535271],
[0.79257097, -10.23535271, 10.35186341]])
答案 0 :(得分:6)
这不是倒退吗?定义中的A*V = V*D
,A = V*D*V^(-1)
。
>>> import numpy as np
>>> from scipy import linalg
>>> A = np.matrix([[16,-9,0],[-9,20,-11],[0,-11,11]])
>>> D, V = linalg.eig(A)
>>> D = np.diagflat(D)
>>>
>>> b = np.matrix(linalg.inv(V))*np.matrix(D)*np.matrix(V)
>>> b
matrix([[ 15.52275377+0.j, 9.37603361+0.j, 0.79257097+0.j],
[ 9.37603361+0.j, 21.12538282+0.j, -10.23535271+0.j],
[ 0.79257097+0.j, -10.23535271+0.j, 10.35186341+0.j]])
>>> np.allclose(A, b)
False
但
>>> f = np.matrix(V)*np.matrix(D)*np.matrix(linalg.inv(V))
>>> f
matrix([[ 1.60000000e+01+0.j, -9.00000000e+00+0.j, -9.54791801e-15+0.j],
[ -9.00000000e+00+0.j, 2.00000000e+01+0.j, -1.10000000e+01+0.j],
[ -1.55431223e-15+0.j, -1.10000000e+01+0.j, 1.10000000e+01+0.j]])
>>> np.allclose(A, f)
True
除此之外:np.dot
使用>>> dotm = lambda *args: reduce(np.dot, args)
>>> dotm(V, D, inv(V))
array([[ 1.60000000e+01+0.j, -9.00000000e+00+0.j, -9.54791801e-15+0.j],
[ -9.00000000e+00+0.j, 2.00000000e+01+0.j, -1.10000000e+01+0.j],
[ -1.55431223e-15+0.j, -1.10000000e+01+0.j, 1.10000000e+01+0.j]])
来避免所有这些转化为矩阵,例如
{{1}}
我常常觉得更干净,但YMMV。