连接组件标签

时间:2013-01-22 18:14:37

标签: algorithm multidimensional-array area neighbours

我几天前问了一个类似的问题,但我还没有找到解决问题的有效方法。 我正在开发一个简单的控制台游戏,我有一个像这样的2D数组:

1,0,0,0,1
1,1,0,1,1
0,1,0,0,1
1,1,1,1,0
0,0,0,1,0

我试图找到由相邻1(4路连接)组成的所有区域。因此,在此示例中,2个区域如下:

1
1,1
  1
1,1,1,1
      1

和:

       1
     1,1
       1

我一直在研究的算法找到了一个单元的邻居的所有邻居,并且在这种矩阵上完美地工作。但是,当我使用更大的数组(如90 * 90)时,程序非常慢,有时使用的巨大数组会导致堆栈溢出。

我的另一个问题上的一个人告诉我关于连接组件标签是我问题的有效解决方案。

有人可以向我展示使用这种算法的任何C ++代码,因为我对它与这种不相交的数据结构的实际工作方式有点混淆......

非常感谢你的帮助和时间。

5 个答案:

答案 0 :(得分:28)

我先给你一些代码然后解释一下:

// direction vectors
const int dx[] = {+1, 0, -1, 0};
const int dy[] = {0, +1, 0, -1};

// matrix dimensions
int row_count;
int col_count;

// the input matrix
int m[MAX][MAX];

// the labels, 0 means unlabeled
int label[MAX][MAX];

void dfs(int x, int y, int current_label) {
  if (x < 0 || x == row_count) return; // out of bounds
  if (y < 0 || y == col_count) return; // out of bounds
  if (label[x][y] || !m[x][y]) return; // already labeled or not marked with 1 in m

  // mark the current cell
  label[x][y] = current_label;

  // recursively mark the neighbors
  for (int direction = 0; direction < 4; ++direction)
    dfs(x + dx[direction], y + dy[direction], current_label);
}

void find_components() {
  int component = 0;
  for (int i = 0; i < row_count; ++i) 
    for (int j = 0; j < col_count; ++j) 
      if (!label[i][j] && m[i][j]) dfs(i, j, ++component);
}

这是解决此问题的常用方法。

方向矢量只是查找相邻单元格的一种很好的方法(在四个方向中的每个方向上)。

dfs 函数执行网格的深度优先搜索。这仅仅意味着它将访问从起始单元可到达的所有单元。每个单元格都会标有 current_label

find_components 函数遍历网格的所有单元格,如果找到未标记的单元格(标记为1),则启动组件标记。

这也可以使用堆栈迭代完成。 如果使用队列替换堆栈,则会获得 bfs 广度优先搜索

答案 1 :(得分:6)

这可以用union find来解决(虽然DFS,如另一个答案中所示,可能更简单一些)。

此数据结构背后的基本思想是重复合并同一组件中的元素。这是通过将每个组件表示为树(节点跟踪其自己的父节点而不是相反的方式)来完成的,您可以通过遍历根节点来检查2个元素是否在同一个组件中,并且您可以合并节点通过简单地使一个根成为另一个根的父。

证明这一点的简短代码示例:

const int w = 5, h = 5;
int input[w][h] =  {{1,0,0,0,1},
                    {1,1,0,1,1},
                    {0,1,0,0,1},
                    {1,1,1,1,0},
                    {0,0,0,1,0}};
int component[w*h];

void doUnion(int a, int b)
{
    // get the root component of a and b, and set the one's parent to the other
    while (component[a] != a)
        a = component[a];
    while (component[b] != b)
        b = component[b];
    component[b] = a;
}

void unionCoords(int x, int y, int x2, int y2)
{
    if (y2 < h && x2 < w && input[x][y] && input[x2][y2])
        doUnion(x*h + y, x2*h + y2);
}

int main()
{
    for (int i = 0; i < w*h; i++)
        component[i] = i;
    for (int x = 0; x < w; x++)
    for (int y = 0; y < h; y++)
    {
        unionCoords(x, y, x+1, y);
        unionCoords(x, y, x, y+1);
    }

    // print the array
    for (int x = 0; x < w; x++)
    {
        for (int y = 0; y < h; y++)
        {
            if (input[x][y] == 0)
            {
                cout << ' ';
                continue;
            }
            int c = x*h + y;
            while (component[c] != c) c = component[c];
            cout << (char)('a'+c);
        }
        cout << "\n";
    }
}

Live demo

以上将显示每组使用不同字母的字母。

p   i
pp ii
 p  i
pppp 
   p 

应该很容易修改它以单独获取组件或获取与每个组件对应的元素列表。一个想法是将cout << (char)('a'+c);替换为componentMap[c].add(Point(x,y))componentMapmap<int, list<Point>> - 此地图中的每个条目将对应一个组件并给出一个点列表。< / p>

提高联合查找效率有各种优化,上面只是一个基本的实现。

答案 2 :(得分:0)

您也可以尝试这种传递闭包方法,但是当图像中有许多分离的对象时,传递闭包的三重循环会减慢速度,建议更改代码

干杯

戴夫

void CC(unsigned char* pBinImage, unsigned char* pOutImage, int width, int height, int     CON8)
{
int i, j, x, y, k, maxIndX, maxIndY,  sum, ct, newLabel=1, count, maxVal=0, sumVal=0, maxEQ=10000;
int *eq=NULL, list[4];
int bAdd;

memcpy(pOutImage, pBinImage, width*height*sizeof(unsigned char));

unsigned char* equivalences=(unsigned char*) calloc(sizeof(unsigned char), maxEQ*maxEQ);

// modify labels this should be done with iterators to modify elements
// current column
for(j=0; j<height; j++)
{
    // current row
    for(i=0; i<width; i++)
    {
        if(pOutImage[i+j*width]>0)
        {
            count=0;

            // go through blocks
            list[0]=0;
            list[1]=0;
            list[2]=0;
            list[3]=0;

            if(j>0)
            {
                if((i>0))
                {
                    if((pOutImage[(i-1)+(j-1)*width]>0) && (CON8 > 0))
                        list[count++]=pOutImage[(i-1)+(j-1)*width];
                }

                if(pOutImage[i+(j-1)*width]>0)
                {
                    for(x=0, bAdd=true; x<count; x++)
                    {
                        if(pOutImage[i+(j-1)*width]==list[x])
                            bAdd=false;
                    }

                    if(bAdd)
                        list[count++]=pOutImage[i+(j-1)*width];
                }

                if(i<width-1)
                {
                    if((pOutImage[(i+1)+(j-1)*width]>0) && (CON8 > 0))
                    {
                        for(x=0, bAdd=true; x<count; x++)
                        {
                            if(pOutImage[(i+1)+(j-1)*width]==list[x])
                                bAdd=false;
                        }

                        if(bAdd)
                            list[count++]=pOutImage[(i+1)+(j-1)*width];
                    }
                }
            }

            if(i>0)
            {
                if(pOutImage[(i-1)+j*width]>0)
                {
                    for(x=0, bAdd=true; x<count; x++)
                    {
                        if(pOutImage[(i-1)+j*width]==list[x])
                            bAdd=false;
                    }

                    if(bAdd)
                        list[count++]=pOutImage[(i-1)+j*width];
                }
            }

            // has a neighbour label
            if(count==0)
                pOutImage[i+j*width]=newLabel++;
            else
            {
                pOutImage[i+j*width]=list[0];

                if(count>1)
                {
                    // store equivalences in table
                    for(x=0; x<count; x++)
                        for(y=0; y<count; y++)
                            equivalences[list[x]+list[y]*maxEQ]=1;
                }

            }
        }
    }
}

 // floyd-Warshall algorithm - transitive closure - slow though :-(
 for(i=0; i<newLabel; i++)
    for(j=0; j<newLabel; j++)
    {
        if(equivalences[i+j*maxEQ]>0)
        {
            for(k=0; k<newLabel; k++)
            {
                equivalences[k+j*maxEQ]= equivalences[k+j*maxEQ] || equivalences[k+i*maxEQ];
            }
        }
    }


eq=(int*) calloc(sizeof(int), newLabel);

for(i=0; i<newLabel; i++)
    for(j=0; j<newLabel; j++)
    {
        if(equivalences[i+j*maxEQ]>0)
        {
            eq[i]=j;
            break;
        }
    }


free(equivalences);

// label image with equivalents
for(i=0; i<width*height; i++)
{
    if(pOutImage[i]>0&&eq[pOutImage[i]]>0)
        pOutImage[i]=eq[pOutImage[i]];
}

free(eq);
}

答案 3 :(得分:0)

非常有用的Document =&gt; https://docs.google.com/file/d/0B8gQ5d6E54ZDM204VFVxMkNtYjg/edit

java应用程序 - 开源 - 从图像中提取对象 - 连接的组件标记=&gt; https://drive.google.com/file/d/0B8gQ5d6E54ZDTVdsWE1ic2lpaHM/edit?usp=sharing

    import java.util.ArrayList;

public class cclabeling

{

 int neighbourindex;ArrayList<Integer> Temp;

 ArrayList<ArrayList<Integer>> cc=new ArrayList<>();

 public int[][][] cclabel(boolean[] Main,int w){

 /* this method return array of arrays "xycc" each array contains 

 the x,y coordinates of pixels of one connected component 

 – Main => binary array of image 

 – w => width of image */

long start=System.nanoTime();

int len=Main.length;int id=0;

int[] dir={-w-1,-w,-w+1,-1,+1,+w-1,+w,+w+1};

for(int i=0;i<len;i+=1){

if(Main[i]){

Temp=new ArrayList<>();

Temp.add(i);

for(int x=0;x<Temp.size();x+=1){

id=Temp.get(x);

for(int u=0;u<8;u+=1){

neighbourindex=id+dir[u];

 if(Main[neighbourindex]){ 

 Temp.add(neighbourindex);

 Main[neighbourindex]=false;

 }

 }

Main[id]=false;

}

cc.add(Temp);

    }

}

int[][][] xycc=new int[cc.size()][][];

int x;int y;

for(int i=0;i<cc.size();i+=1){

 xycc[i]=new int[cc.get(i).size()][2];



 for(int v=0;v<cc.get(i).size();v+=1){

 y=Math.round(cc.get(i).get(v)/w);

 x=cc.get(i).get(v)-y*w;

 xycc[i][v][0]=x;

 xycc[i][v][1]=y;

 }



}

long end=System.nanoTime();

long time=end-start;

System.out.println("Connected Component Labeling Time =>"+time/1000000+" milliseconds");

System.out.println("Number Of Shapes => "+xycc.length);

 return xycc;



 }

}

答案 4 :(得分:0)

请在下面找到连接组件标签的示例代码。代码是用JAVA编写的

package addressextraction;

public class ConnectedComponentLabelling {

    int[] dx={+1, 0, -1, 0};
    int[] dy={0, +1, 0, -1};
    int row_count=0;
    int col_count=0;
    int[][] m;
    int[][] label;

    public ConnectedComponentLabelling(int row_count,int col_count) {
        this.row_count=row_count;
        this.col_count=col_count;
        m=new int[row_count][col_count];
        label=new int[row_count][col_count];
    }

    void dfs(int x, int y, int current_label) {
          if (x < 0 || x == row_count) return; // out of bounds
          if (y < 0 || y == col_count) return; // out of bounds
          if (label[x][y]!=0 || m[x][y]!=1) return; // already labeled or not marked with 1 in m

          // mark the current cell
          label[x][y] = current_label;
         // System.out.println("****************************");

          // recursively mark the neighbors
          int direction = 0;
          for (direction = 0; direction < 4; ++direction)
            dfs(x + dx[direction], y + dy[direction], current_label);
        }

    void find_components() {
          int component = 0;
          for (int i = 0; i < row_count; ++i) 
            for (int j = 0; j < col_count; ++j) 
              if (label[i][j]==0 && m[i][j]==1) dfs(i, j, ++component);
        }


    public static void main(String[] args) {
        ConnectedComponentLabelling l=new ConnectedComponentLabelling(4,4);
        l.m[0][0]=0;
        l.m[0][1]=0;
        l.m[0][2]=0;
        l.m[0][3]=0;

        l.m[1][0]=0;
        l.m[1][1]=1;
        l.m[1][2]=0;
        l.m[1][3]=0;

        l.m[2][0]=0;
        l.m[2][1]=0;
        l.m[2][2]=0;
        l.m[2][3]=0;

        l.m[3][0]=0;
        l.m[3][1]=1;
        l.m[3][2]=0;
        l.m[3][3]=0;

        l.find_components();

        for (int i = 0; i < 4; i++) {
            for (int j = 0; j < 4; j++) {
                System.out.print(l.label[i][j]);
            }
            System.out.println("");

        }


    }

}