我知道:
https://github.com/lsegal/barracuda
自01/11以来尚未更新
并且
http://rubyforge.org/projects/ruby-opencl/
自03/10以来尚未更新。
这些项目是否已经死亡?或者他们根本没有改变,因为他们的功能,OpenCL / Ruby从那时起没有改变。有人使用这些项目吗?运气好吗?
如果没有,你能为Ruby推荐另一个opencl gem吗?或者这种呼叫通常是如何完成的?只需从Ruby调用raw C?
答案 0 :(得分:4)
您可以尝试opencl_ruby_ffi,它是由我的同事积极开发的,并且与OpenCL版本1.2配合得很好。 OpenCL 2.0也应尽快推出。
sudo gem install opencl_ruby_ffi
In Khronos forum您可以找到一个快速示例,说明它的工作原理:
require 'opencl_ruby_ffi'
# select the first platform/device available
# improve it if you have multiple GPU on your machine
platform = OpenCL::platforms.first
device = platform.devices.first
# prepare the source of GPU kernel
# this is not Ruby but OpenCL C
source = <<EOF
__kernel void addition( float2 alpha, __global const float *x, __global float *y) {\n\
size_t ig = get_global_id(0);\n\
y[ig] = (alpha.s0 + alpha.s1 + x[ig])*0.3333333333333333333f;\n\
}
EOF
# configure OpenCL environment, refer to OCL API if necessary
context = OpenCL::create_context(device)
queue = context.create_command_queue(device, :properties => OpenCL::CommandQueue::PROFILING_ENABLE)
# create and compile the OpenCL C source code
prog = context.create_program_with_source(source)
prog.build
# allocate CPU (=RAM) buffers and
# fill the input one with random values
a_in = NArray.sfloat(65536).random(1.0)
a_out = NArray.sfloat(65536)
# allocate GPU buffers matching the CPU ones
b_in = context.create_buffer(a_in.size * a_in.element_size, :flags => OpenCL::Mem::COPY_HOST_PTR, :host_ptr => a_in)
b_out = context.create_buffer(a_out.size * a_out.element_size)
# create a constant pair of float
f = OpenCL::Float2::new(3.0,2.0)
# trigger the execution of kernel 'addition' on 128 cores
event = prog.addition(queue, [65536], f, b_in, b_out,
:local_work_size => [128])
# #Or if you want to be more OpenCL like:
# k = prog.create_kernel("addition")
# k.set_arg(0, f)
# k.set_arg(1, b_in)
# k.set_arg(2, b_out)
# event = queue.enqueue_NDrange_kernel(k, [65536],:local_work_size => [128])
# tell OCL to transfer the content GPU buffer b_out
# to the CPU memory (a_out), but only after `event` (= kernel execution)
# has completed
queue.enqueue_read_buffer(b_out, a_out, :event_wait_list => [event])
# wait for everything in the command queue to finish
queue.finish
# now a_out contains the result of the addition performed on the GPU
# add some cleanup here ...
# verify that the computation went well
diff = (a_in - a_out*3.0)
65536.times { |i|
raise "Computation error #{i} : #{diff[i]+f.s0+f.s1}" if (diff[i]+f.s0+f.s1).abs > 0.00001
}
puts "Success!"
答案 1 :(得分:2)
您可能希望将您想要的任何C功能打包为gem。这非常简单,这样您就可以将所有c逻辑包装在特定的命名空间中,以便在其他项目中重用。
答案 2 :(得分:0)
如果您想使用GPU进行高速计算,Cumo / NArray是一个不错的选择。 Cumo具有与NArray相同的接口。虽然是cuda而不是opencl。