将Sobel边缘检测与CUDA和OpenCV一起应用于灰度jpg图像

时间:2013-01-16 12:50:42

标签: image opencv cuda

之前已经提出过这个问题,但是提问者没有提供足够的信息并且没有得到答复,我很好奇这个程序。

Original Question Link

我正在尝试使用opencv和cuda库进行sobel边缘检测, X方向的索贝尔核心是

-1 0 1   
-2 0 2  
-1 0 1   

我的项目中有3个文件

main.cpp
CudaKernel.cu
CudaKernel.h

的main.cpp

#include <stdlib.h>
#include <iostream>
#include <string.h>
#include <Windows.h>
#include <opencv2\core\core.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\gpu\gpu.hpp>
#include <cuda_runtime.h>
#include <cuda_gl_interop.h>
#include "CudaKernel.h"

using namespace cv;
using namespace std;


int main(int argc, char** argv) 
{
    IplImage* image;

    try
    {
        image = cvLoadImage("4555472_460s.jpg", CV_LOAD_IMAGE_GRAYSCALE);
        gpu::DeviceInfo info = gpu::getDevice();
        cout << info.name() << endl;
        cout << "Stream Processor : "<< info.multiProcessorCount() << endl;
        cout << "Total Graphic Memory :" << info.totalMemory()/1048576 << " MB" << endl; 
    }
    catch (const cv::Exception* ex)
    {
        cout << "Error: " << ex->what() << endl;
    }
    if(!image )
        {
             cout << "Could not open or find the image" << std::endl ;
             return -1;
        }


    IplImage* image2=cvCreateImage(cvGetSize(image),IPL_DEPTH_32F,image->nChannels);
    IplImage* image3=cvCreateImage(cvGetSize(image),IPL_DEPTH_32F,image->nChannels);

    unsigned char * pseudo_input=(unsigned char *)image->imageData;
    float *output=(float*)image2->imageData;
    float *input=(float*)image3->imageData;
    int s=image->widthStep/sizeof(float);
        for(int w=0;w<=(image->height);w++)
            for(int h=0;h<(image->width*image->nChannels);h++)
            {
                input[w*s+h]= pseudo_input[w*s+h];
            }


    Pixel *fagget  = (unsigned char*) image->imageData;
    kernelcall(input, output, image->width,image->height, image->widthStep);

//  cv::namedWindow( "Display window", CV_WINDOW_AUTOSIZE );// Create a window for display.
    cvShowImage( "Original Image", image ); // Show our image inside it.
    cvShowImage("Sobeled Image", image2);
    waitKey(0); // Wait for a keystroke in the window
    return 0;

}

CudaKernel.cu

#include<cuda.h>
#include<iostream>
#include "CudaKernel.h"
using namespace std;
#define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
#define CudaCheckError()    __cudaCheckError( __FILE__, __LINE__ )
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)


texture <float,2,cudaReadModeElementType> tex1;
texture<unsigned char, 2> tex;
static cudaArray *array = NULL;
static cudaArray *cuArray = NULL;


//Kernel for x direction sobel
__global__ void implement_x_sobel(float* garbage,float* output,int width,int height,int widthStep)
{
    int x=blockIdx.x*blockDim.x+threadIdx.x;
    int y=blockIdx.y*blockDim.y+threadIdx.y;

    float output_value=((0*tex2D(tex1,x,y))+(2*tex2D(tex1,x+1,y))+(-2*tex2D(tex1,x-  1,y))+(0*tex2D(tex1,x,y+1))+(1*tex2D(tex1,x+1,y+1))+(-1*tex2D(tex1,x-1,y+1))+  (1*tex2D(tex1,x+1,y-1))+(0*tex2D(tex1,x,y-1))+(-1*tex2D(tex1,x-1,y-1)));
    output[y*widthStep+x]=output_value;
}


inline void __checkCudaErrors( cudaError err, const char *file, const int line )
{
    if( cudaSuccess != err) {
        fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
                file, line, (int)err, cudaGetErrorString( err ) );
        exit(-1);
    }
}   

//Host Code
 inline void __cudaSafeCall( cudaError err, const char *file, const int line )
{
#ifdef CUDA_ERROR_CHECK
if ( cudaSuccess != err )
{
    printf("cudaSafeCall() failed at %s:%i : %s\n",
             file, line, cudaGetErrorString( err ) );
    exit( -1 );
}    
#endif

return;
}
inline void __cudaCheckError( const char *file, const int line )
{
#ifdef CUDA_ERROR_CHECK
cudaError err = cudaGetLastError();
if ( cudaSuccess != err )
{
    printf("cudaCheckError() failed at %s:%i : %s\n",
             file, line, cudaGetErrorString( err ) );
   exit( -1 );
}
#endif

return;
}

void kernelcall(float* input,float* output,int width,int height,int widthStep){
    //cudaChannelFormatDesc channelDesc=cudaCreateChannelDesc(32,32,0,0,cudaChannelFormatKindFloat);
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
    //cudaArray *cuArray;
    CudaSafeCall(cudaMallocArray(&cuArray,&channelDesc,width,height));
    cudaMemcpyToArray(cuArray,0,0,input,widthStep*height,cudaMemcpyHostToDevice);

    tex1.addressMode[0]=cudaAddressModeClamp;
    tex1.addressMode[1]=cudaAddressModeClamp;
    tex1.filterMode=cudaFilterModeLinear;
    cudaBindTextureToArray(tex1,cuArray,channelDesc);
    tex1.normalized=false;
    float * D_output_x;
    float * garbage=NULL;
    CudaSafeCall(cudaMalloc(&D_output_x,widthStep*height)); 
    dim3 blocksize(16,16);
    dim3 gridsize;
    gridsize.x=(width+blocksize.x-1)/blocksize.x;
    gridsize.y=(height+blocksize.y-1)/blocksize.y;

    implement_x_sobel<<<gridsize,blocksize>>>(garbage,D_output_x,width,height,widthStep/sizeof(float));
    cudaThreadSynchronize();
    CudaCheckError();
    CudaSafeCall(cudaMemcpy(output,D_output_x,height*widthStep,cudaMemcpyDeviceToHost));
    cudaFree(D_output_x);
    cudaFree(garbage);
    cudaFreeArray(cuArray);
}

结果真的搞砸了,它看起来并不像原始图像

结果:

Incorrect Result

我将代码的某些行更改为

float *pseudo_input=(float *)image->imageData;
float *output=(float*)image2->imageData;
float *input=(float*)image3->imageData;
float *inputnormalized=(float *)image4->imageData;

int s=image->widthStep/sizeof(float);
for(int w=0;w<=(image->height);w++)
    for(int h=0;h<(image->width*image->nChannels);h++)
    {
        input[w*s+h]= pseudo_input[w*s+h];
    }


kernelcall(input, output, image->width,image->height, image->widthStep);

cvNormalize(input,inputnormalized,0,255,NORM_MINMAX, CV_8UC1);

cvShowImage( "Original Image", image ); // Show our image inside it.
cvShowImage("Sobeled Image", image2);

但是现在我得到了一个未处理的异常错误。

2 个答案:

答案 0 :(得分:4)

OpenCV规则1:

  

除非直接通过底层数据指针访问图像数据   绝对必要,例如将数据复制到GPU。参考(Me:p)

<强>错误/建议:

  1. 而不是通过循环图像数据来转换图像 指针,使用cvConvert更改图像数据类型。循环非常 很容易出错。

  2. 调用名为kernelcall的函数时,您正在传递 float图像的数据指针,但通过了widthStep 原始的8位图像。这是导致错误结果的主要原因 它会导致内核中的索引不正确。

  3. 在2个音高指针之间执行内存复制时 不同的widthSteps,总是使用可用的2D内存复制功能 在CUDA运行时,例如cudaMemcpy2DcudaMemcpy2DToArray等。在您的情况下,cuArray内部的宽度步长未知,输入IplImage的宽度与cuArray的宽度不同。

  4. 避免不必要的标题,作业和标识符声明。

  5. 在CUDA内核中添加绑定检查,以便只有那些线程执行落在图像内部的内存读/写。它可能会导致一点偏差,但它比无效的内存读/写更好。

  6. 修订代码(已测试):

    <强> Main.cpp的

    #include <iostream>
    #include <opencv2/opencv.hpp>
    #include "CudaKernel.h"
    
    using namespace cv;
    using namespace std;
    
    int main(int argc, char** argv) 
    {
        IplImage* image;
    
        image = cvLoadImage("4555472_460s.jpg", CV_LOAD_IMAGE_GRAYSCALE);
    
        if(!image )
        {
            cout << "Could not open or find the image" << std::endl;
            return -1;
        }
    
    
        IplImage* image2 = cvCreateImage(cvGetSize(image),IPL_DEPTH_32F,image->nChannels);
        IplImage* image3 = cvCreateImage(cvGetSize(image),IPL_DEPTH_32F,image->nChannels);
    
        //Convert the input image to float
        cvConvert(image,image3);
    
        float *output = (float*)image2->imageData;
        float *input =  (float*)image3->imageData;
    
        kernelcall(input, output, image->width,image->height, image3->widthStep);
    
        //Normalize the output values from 0.0 to 1.0
        cvScale(image2,image2,1.0/255.0);
    
        cvShowImage("Original Image", image );
        cvShowImage("Sobeled Image", image2);
        cvWaitKey(0);
        return 0;
    }
    

    <强> CudaKernel.cu

    #include<cuda.h>
    #include<iostream>
    #include "CudaKernel.h"
    
    using namespace std;
    
    #define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
    #define CudaCheckError()    __cudaCheckError( __FILE__, __LINE__ )
    #define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
    
    
    texture <float,2,cudaReadModeElementType> tex1;
    
    static cudaArray *cuArray = NULL;
    
    //Kernel for x direction sobel
    __global__ void implement_x_sobel(float* output,int width,int height,int widthStep)
    {
        int x = blockIdx.x * blockDim.x + threadIdx.x;
        int y = blockIdx.y * blockDim.y + threadIdx.y;
    
        //Make sure that thread is inside image bounds
        if(x<width && y<height)
        {
            float output_value = (-1*tex2D(tex1,x-1,y-1)) + (0*tex2D(tex1,x,y-1)) + (1*tex2D(tex1,x+1,y-1))
                               + (-2*tex2D(tex1,x-1,y))   + (0*tex2D(tex1,x,y))   + (2*tex2D(tex1,x+1,y))
                               + (-1*tex2D(tex1,x-1,y+1)) + (0*tex2D(tex1,x,y+1)) + (1*tex2D(tex1,x+1,y+1));
    
            output[y*widthStep+x]=output_value;
        }
    
    }
    
    
    inline void __checkCudaErrors( cudaError err, const char *file, const int line )
    {
        if( cudaSuccess != err) {
            fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
                file, line, (int)err, cudaGetErrorString( err ) );
            exit(-1);
        }
    }   
    
    //Host Code
    inline void __cudaSafeCall( cudaError err, const char *file, const int line )
    {
    #ifdef CUDA_ERROR_CHECK
        if ( cudaSuccess != err )
        {
            printf("cudaSafeCall() failed at %s:%i : %s\n",
                file, line, cudaGetErrorString( err ) );
            exit( -1 );
        }    
    #endif
    
        return;
    }
    inline void __cudaCheckError( const char *file, const int line )
    {
    #ifdef CUDA_ERROR_CHECK
        cudaError err = cudaGetLastError();
        if ( cudaSuccess != err )
        {
            printf("cudaCheckError() failed at %s:%i : %s\n",
                file, line, cudaGetErrorString( err ) );
            exit( -1 );
        }
    #endif
    
        return;
    }
    
    void kernelcall(float* input,float* output,int width,int height,int widthStep)
    {
        cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
    
        CudaSafeCall(cudaMallocArray(&cuArray,&channelDesc,width,height));
    
        //Never use 1D memory copy if host and device pointers have different widthStep.
        // You don't know the width step of CUDA array, so its better to use cudaMemcpy2D...
        cudaMemcpy2DToArray(cuArray,0,0,input,widthStep,width * sizeof(float),height,cudaMemcpyHostToDevice);
    
        cudaBindTextureToArray(tex1,cuArray,channelDesc);
    
        float * D_output_x;
        CudaSafeCall(cudaMalloc(&D_output_x,widthStep*height)); 
    
        dim3 blocksize(16,16);
        dim3 gridsize;
        gridsize.x=(width+blocksize.x-1)/blocksize.x;
        gridsize.y=(height+blocksize.y-1)/blocksize.y;
    
        implement_x_sobel<<<gridsize,blocksize>>>(D_output_x,width,height,widthStep/sizeof(float));
    
        cudaThreadSynchronize();
        CudaCheckError();
    
        //Don't forget to unbind the texture
        cudaUnbindTexture(tex1);
    
        CudaSafeCall(cudaMemcpy(output,D_output_x,height*widthStep,cudaMemcpyDeviceToHost));
    
        cudaFree(D_output_x);
        cudaFreeArray(cuArray);
    }
    

答案 1 :(得分:0)

Here:-

unsigned char * pseudo_input=(unsigned char *)image->imageData;
float *output=(float*)image2->imageData;
float *input=(float*)image3->imageData;
int s=image->widthStep/sizeof(float);
    for(int w=0;w<=(image->height);w++)
        for(int h=0;h<(image->width*image->nChannels);h++)
        {
            input[w*s+h]= pseudo_input[w*s+h];
        }

输入是float *,pseudo_input是uchar *。将所有内容转换为浮动然后处理。最后使用带有NORM_MINMAX的cvNormalize在0和255之间进行标准化,以获得正确的结果。