我正在尝试运行我在python中编写的遗传算法。不幸的是,当有突变时,最适合的解决方案可能会比上一代最适合的解决方案更糟糕,尽管使用精英主义将最合适的解决方案从上一代传递到新一代。像这样:
There are 86825 generations left
Invalid count is: 0
The fittest individual has a fitness of 16.9094.
The least fit individual has a fitness of 36.6535
*******************************************************************************
mutation on 107
There are 86824 generations left
Invalid count is: 3
The fittest individual has a fitness of 19.8637.
The least fit individual has a fitness of 1.1618e+09
我试图实施精英主义,我认为这会避免这种情况发生,但它仍然会发生。我的算法按以下顺序执行:
NUM_GEN = 100000
print "Running Genetic Algorithm for %d generations." % NUM_GEN
gen_count = 0
while gen_count < NUM_GEN:
#genetic.add_fitness_key()
genetic.add_fitness_fast()
fittest_list = np.append(fittest_list, genetic.fittest_fitness)
least_fit_list = np.append(least_fit_list, genetic.least_fitness)
genetic.sort_pop()
genetic.make_new_pop()
genetic.elitism()
genetic.population = genetic.new_pop
print "There are %g generations left" %(NUM_GEN-gen_count)
gen_count+=1
所调用的函数是:
def select_parent_from_tournament(self):
x = random.randint(0, 19)
player1 = self.population[x]
y = random.randint(0, 19)
player2 = self.population[y]
if player1['fitness'] <= player2['fitness']:
parent = player1['chrom_list']
else:
parent = player2['chrom_list']
return parent
def crossover(self):
crossover_point = random.randint(0, self.chromosome_size)*(self.string_length)
parent1 = self.select_parent_from_tournament()
parent2 = self.select_parent_from_tournament()
parent1 = self.mutate(parent1)
parent2 = self.mutate(parent2)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent1[crossover_point:] + parent2[:crossover_point]
return child1, child2
def mutate(self, chromosome):
for i in range(len(chromosome)):
if random.random() < self.mutation_rate:
print 'mutation on %i' % i
if chromosome[i] =='0':
chromosome[i] = '1'
else:
chromosome[i] = '0'
return chromosome
def make_new_pop(self):
self.new_pop = []
for i in range(10):
dictionary1= {}
dictionary2 = {}
dictionary1['chrom_list'], dictionary2['chrom_list'] = \
self.crossover()
self.new_pop = np.append(self.new_pop, [dictionary1, dictionary2])
def elitism(self):
r = random.randint(0, 19)
self.new_pop[r] = self.population[0]
所以我无法理解为什么如果有突变,那么来自旧人群的最适合的解决方案不会传递给新的人群?
答案 0 :(得分:4)
在您的交叉方法中,执行parent1 = self.select_parent_from_tournament()
,它返回对原始群体中染色体列表的引用。之后,你会做一个修改列表的变异(在原始人口中)。只有在突变后,您才能通过child1 = parent1[:crossover_point] + parent2[crossover_point:]
复制孩子的内容。正如@Xavier建议的那样,您需要在mutation()
中的原始人口中创建元素的物理副本。
实际上,您的mutation()
方法更改了原始人口。
作为旁注,通常交叉和变异是两种不同的操作。此外,文献中有参考文献表明变异概率应该保持很低。否则它会阻止你收敛。