我们有一个内部内存管理器,我们使用其中一个产品。内存管理器会覆盖new
和delete
运算符,并且在单线程应用程序中运行良好。但是,我现在的任务是使其适用于多线程应用程序。根据我的理解,下面的伪代码应该可以工作,但它会挂起,即使使用try_lock()
。有什么想法吗?
更新#1
导致“访问冲突”:
#include <mutex>
std::mutex g_mutex;
/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
g_mutex.lock(); // Access violation exception
...
}
导致线程在旋转中永久挂起:
#include <mutex>
std::mutex g_mutex;
bool g_systemInitiated = false;
/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
if (g_systemInitiated == false) return malloc(size);
g_mutex.lock(); // Thread hangs forever here. g_mutex.try_lock() also hangs
...
}
int main(int argc, const char* argv[])
{
// Tell the new() operator that the system has initiated
g_systemInitiated = true;
...
}
更新#2
递归互斥锁也会导致线程在旋转中永久挂起:
#include <mutex>
std::recursive_mutex g_mutex;
bool g_systemInitiated = false;
/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
if (g_systemInitiated == false) return malloc(size);
g_mutex.lock(); // Thread hangs forever here. g_mutex.try_lock() also hangs
...
}
int main(int argc, const char* argv[])
{
// Tell the new() operator that the system has initiated
g_systemInitiated = true;
...
}
更新#3
Jonathan Wakely建议我应该尝试unique_lock
和/或lock_guard
,但锁定仍会在旋转中挂起。
unique_lock
测试:
#include <mutex>
std::mutex g_mutex;
std::unique_lock<std::mutex> g_lock1(g_mutex, std::defer_lock);
bool g_systemInitiated = false;
/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
if (g_systemInitiated == false) return malloc(size);
g_lock1.lock(); // Thread hangs forever here the first time it is called
...
}
int main(int argc, const char* argv[])
{
// Tell the new() operator that the system has initiated
g_systemInitiated = true;
...
}
lock_guard
测试:
#include <mutex>
std::recursive_mutex g_mutex;
bool g_systemInitiated = false;
/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
if (g_systemInitiated == false) return malloc(size);
std::lock_guard<std::mutex> g_lock_guard1(g_mutex); // Thread hangs forever here the first time it is called
...
}
int main(int argc, const char* argv[])
{
// Tell the new() operator that the system has initiated
g_systemInitiated = true;
...
}
我认为我的问题是锁定时C ++ 11互斥库会调用delete
。 delete
也被覆盖:
/*!
\brief Overrides the Standard C++ new operator
\param p [in] The pointer to memory to free
*/
void operator delete(void *p)
{
if (g_systemInitiated == false)
{
free(p);
}
else
{
std::lock_guard<std::mutex> g_lock_guard1(g_mutex);
...
}
}
这会导致死锁情况,除了在锁定或解锁时不会产生对new
或delete
的任何调用的锁定时,我看不到任何好的解决方案。
更新#4
我已经实现了自己的自定义递归互斥锁,它没有调用new
或delete
,也允许同一个线程进入锁定的块。
#include <thread>
std::thread::id g_lockedByThread;
bool g_isLocked = false;
bool g_systemInitiated = false;
/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
if (g_systemInitiated == false) return malloc(size);
while (g_isLocked && g_lockedByThread != std::this_thread::get_id());
g_isLocked = true; // Atomic operation
g_lockedByThread = std::this_thread::get_id();
...
g_isLocked = false;
}
/*!
\brief Overrides the Standard C++ new operator
\param p [in] The pointer to memory to free
*/
void operator delete(void *p)
{
if (g_systemInitiated == false)
{
free(p);
}
else
{
while (g_isLocked && g_lockedByThread != std::this_thread::get_id());
g_isLocked = true; // Atomic operation
g_lockedByThread = std::this_thread::get_id();
...
g_isLocked = false;
}
}
int main(int argc, const char* argv[])
{
// Tell the new() operator that the system has initiated
g_systemInitiated = true;
...
}
更新#5
尝试了Jonathan Wakely的建议,发现微软实施C ++ 11 Mutexs似乎有些不对劲;如果使用/MTd
(多线程调试)编译器标志进行编译,则他的示例会挂起,但如果使用/MDd
(多线程调试DLL)编译器标志进行编译,则可以正常工作。正如乔纳森正确地指出std::mutex
实现应该是constexpr
的。这是我用来测试实现问题的VS 2012 C ++代码:
#include "stdafx.h"
#include <mutex>
#include <iostream>
bool g_systemInitiated = false;
std::mutex g_mutex;
void *operator new(size_t size)
{
if (g_systemInitiated == false) return malloc(size);
std::lock_guard<std::mutex> lock(g_mutex);
std::cout << "Inside new() critical section" << std::endl;
// <-- Memory manager would be called here, dummy call to malloc() in stead
return malloc(size);
}
void operator delete(void *p)
{
if (g_systemInitiated == false) free(p);
else
{
std::lock_guard<std::mutex> lock(g_mutex);
std::cout << "Inside delete() critical section" << std::endl;
// <-- Memory manager would be called here, dummy call to free() in stead
free(p);
}
}
int _tmain(int argc, _TCHAR* argv[])
{
g_systemInitiated = true;
char *test = new char[100];
std::cout << "Allocated" << std::endl;
delete test;
std::cout << "Deleted" << std::endl;
return 0;
}
更新#6
向Microsoft提交错误报告: https://connect.microsoft.com/VisualStudio/feedback/details/776596/std-mutex-not-a-constexpr-with-mtd-compiler-flag#details
答案 0 :(得分:1)
默认情况下,互斥锁库使用new
,而std :: mutex 不递归(即可重入)。一个鸡蛋问题。
UPDATE 正如下面的评论中指出的那样,使用std :: recursive_mutex可能会有效。但是,对于全局互斥体的静态初始化顺序的经典C ++问题仍然存在,外部访问全局互斥体的危险仍然存在(最好将其置于匿名命名空间内。)
UPDATE 2 您可能过早地将g_systemInitiated切换为true,即在互斥锁有机会完成初始化之前,因此对{{1的“首次通过”调用永远不会发生。要强制执行此操作,您可以尝试使用分配器模块中的初始化函数调用替换main()中的赋值:
malloc()
答案 1 :(得分:0)
除了第一个示例之外,您的所有示例都已损坏,这对于不使用作用域锁定类型来说是非常糟糕的做法。
如果您的编译器或标准库没有损坏,这应该可以工作:
#include <mutex>
std::mutex g_mutex;
void *operator new(size_t size)
{
std::lock_guard<std::mutex> lock(g_mutex);
...
}