重写新运算符时,std :: mutex锁会挂起

时间:2013-01-14 13:29:48

标签: c++ multithreading c++11 visual-studio-2012 mutex

我们有一个内部内存管理器,我们使用其中一个产品。内存管理器会覆盖newdelete运算符,并且在单线程应用程序中运行良好。但是,我现在的任务是使其适用于多线程应用程序。根据我的理解,下面的伪代码应该可以工作,但它会挂起,即使使用try_lock()。有什么想法吗?

更新#1

导致“访问冲突”:

#include <mutex>

std::mutex g_mutex;

/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
   g_mutex.lock(); // Access violation exception
   ...   
}

导致线程在旋转中永久挂起:

#include <mutex>

std::mutex g_mutex;
bool g_systemInitiated = false;


/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
   if (g_systemInitiated == false) return malloc(size);
   g_mutex.lock(); // Thread hangs forever here. g_mutex.try_lock() also hangs
   ...   
}

int main(int argc, const char* argv[])
{
   // Tell the new() operator that the system has initiated
   g_systemInitiated = true;
   ...
}

更新#2

递归互斥锁也会导致线程在旋转中永久挂起:

#include <mutex>

std::recursive_mutex g_mutex;
bool g_systemInitiated = false;


/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
   if (g_systemInitiated == false) return malloc(size);
   g_mutex.lock(); // Thread hangs forever here. g_mutex.try_lock() also hangs
   ...   
}

int main(int argc, const char* argv[])
{
   // Tell the new() operator that the system has initiated
   g_systemInitiated = true;
   ...
}

更新#3

Jonathan Wakely建议我应该尝试unique_lock和/或lock_guard,但锁定仍会在旋转中挂起。

unique_lock测试:

#include <mutex>

std::mutex g_mutex;
std::unique_lock<std::mutex> g_lock1(g_mutex, std::defer_lock);
bool g_systemInitiated = false;

/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
   if (g_systemInitiated == false) return malloc(size);
   g_lock1.lock(); // Thread hangs forever here the first time it is called
   ...   
}

int main(int argc, const char* argv[])
{
   // Tell the new() operator that the system has initiated
   g_systemInitiated = true;
   ...
}

lock_guard测试:

#include <mutex>

std::recursive_mutex g_mutex;
bool g_systemInitiated = false;


/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
   if (g_systemInitiated == false) return malloc(size);
   std::lock_guard<std::mutex> g_lock_guard1(g_mutex); // Thread hangs forever here the first time it is called
   ...   
}

int main(int argc, const char* argv[])
{
   // Tell the new() operator that the system has initiated
   g_systemInitiated = true;
   ...
}

我认为我的问题是锁定时C ++ 11互斥库会调用deletedelete也被覆盖:

/*!
\brief Overrides the Standard C++ new operator
\param p [in] The pointer to memory to free
*/
void operator delete(void *p)
{
    if (g_systemInitiated == false)
    {
       free(p); 
    }
    else
    {
       std::lock_guard<std::mutex> g_lock_guard1(g_mutex);
       ...
    }
}

这会导致死锁情况,除了在锁定或解锁时不会产生对newdelete的任何调用的锁定时,我看不到任何好的解决方案。

更新#4

我已经实现了自己的自定义递归互斥锁,它没有调用newdelete,也允许同一个线程进入锁定的块。

#include <thread>

std::thread::id g_lockedByThread;
bool g_isLocked = false;
bool g_systemInitiated = false;

/*!
\brief Overrides the Standard C++ new operator
\param size [in] Number of bytes to allocate
*/
void *operator new(size_t size)
{
   if (g_systemInitiated == false) return malloc(size);

   while (g_isLocked && g_lockedByThread != std::this_thread::get_id());
   g_isLocked = true; // Atomic operation
   g_lockedByThread = std::this_thread::get_id();
   ...   
   g_isLocked = false;
}

/*!
\brief Overrides the Standard C++ new operator
\param p [in] The pointer to memory to free
*/
void operator delete(void *p)
{
    if (g_systemInitiated == false)
    {
       free(p); 
    }
    else
    {
       while (g_isLocked && g_lockedByThread != std::this_thread::get_id());
       g_isLocked = true; // Atomic operation
       g_lockedByThread = std::this_thread::get_id();
       ...   
       g_isLocked = false;
    }
}

int main(int argc, const char* argv[])
{
   // Tell the new() operator that the system has initiated
   g_systemInitiated = true;
   ...
}

更新#5

尝试了Jonathan Wakely的建议,发现微软实施C ++ 11 Mutexs似乎有些不对劲;如果使用/MTd(多线程调试)编译器标志进行编译,则他的示例会挂起,但如果使用/MDd(多线程调试DLL)编译器标志进行编译,则可以正常工作。正如乔纳森正确地指出std::mutex实现应该是constexpr的。这是我用来测试实现问题的VS 2012 C ++代码:

#include "stdafx.h"

#include <mutex>
#include <iostream>

bool g_systemInitiated = false;
std::mutex g_mutex;

void *operator new(size_t size)
{
    if (g_systemInitiated == false) return malloc(size);
    std::lock_guard<std::mutex> lock(g_mutex);
    std::cout << "Inside new() critical section" << std::endl;
    // <-- Memory manager would be called here, dummy call to malloc() in stead
    return malloc(size);
}

void operator delete(void *p)
{
    if (g_systemInitiated == false) free(p); 
    else
    {
        std::lock_guard<std::mutex> lock(g_mutex);
        std::cout << "Inside delete() critical section" << std::endl;
        // <-- Memory manager would be called here, dummy call to free() in stead
        free(p);
    }
}

int _tmain(int argc, _TCHAR* argv[])
{
    g_systemInitiated = true;

    char *test = new char[100];
    std::cout << "Allocated" << std::endl;
    delete test;
    std::cout << "Deleted" << std::endl;

    return 0;
}

更新#6

向Microsoft提交错误报告: https://connect.microsoft.com/VisualStudio/feedback/details/776596/std-mutex-not-a-constexpr-with-mtd-compiler-flag#details

2 个答案:

答案 0 :(得分:1)

默认情况下,互斥锁库使用new,而std :: mutex 递归(即可重入)。一个鸡蛋问题。

UPDATE 正如下面的评论中指出的那样,使用std :: recursive_mutex可能会有效。但是,对于全局互斥体的静态初始化顺序的经典C ++问题仍然存在,外部访问全局互斥体的危险仍然存在(最好将其置于匿名命名空间内。)

UPDATE 2 您可能过早地将g_systemInitiated切换为true,即在互斥锁有机会完成初始化之前,因此对{{1的“首次通过”调用永远不会发生。要强制执行此操作,您可以尝试使用分配器模块中的初始化函数调用替换main()中的赋值:

malloc()

答案 1 :(得分:0)

除了第一个示例之外,您的所有示例都已损坏,这对于不使用作用域锁定类型来说是非常糟糕的做法。

如果您的编译器或标准库没有损坏,这应该可以工作:

#include <mutex>

std::mutex g_mutex;

void *operator new(size_t size)
{
   std::lock_guard<std::mutex> lock(g_mutex);
   ...   
}