将numpy的数组转换为OpenCV等效转换

时间:2013-01-09 11:38:31

标签: c++ python arrays opencv numpy

我遇到了将numpy的ndarray函数转换为等价函数的问题 OpenCV C ++调用将n维cv :: Mat重新整形/拆分成适当的切片。 特别是我试图转换OpenCV python2示例“texture_flow.py” (> = OpenCV 2.4.3)到C ++。我在下面的代码段中标记了相关的行。

# [......]
img = cv2.imread(fn)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# simple width and height tuple
h, w = img.shape[:2]

eigen = cv2.cornerEigenValsAndVecs(gray, 15, 3)
print eigen.shape # prints: (height, widht, 6), i.e. 6 channels

# Problem 1:
# OpenCV's reshape function is not sufficient to do this.
# probably must be split into several steps...
eigen = eigen.reshape(h, w, 3, 2)  # [[e1, e2], v1, v2]
print eigen.shape # prints: (height, width, 3, 2)

# Problem 2:
# I assume this is meant to get the the v1 and v2 matrices 
# from the previous reshape
flow = eigen[:,:,2]
print flow.shape # prints: (height, width, 2), i.e. 2 channels

vis = img.copy()
# C++: vis.data[i] = (uchar)((192 + (int)vis.data[i]) / 2);
vis[:] = (192 + np.uint32(vis)) / 2

d = 12

# Problem 3:
# Can probably be split into 2 nested for-loops 
points =  np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)

# [......]

有人可以帮我将相关行翻译成C ++吗?

1 个答案:

答案 0 :(得分:2)

在彻底考虑之后,这比预期的要容易得多。这只是有趣的numpy数组语法令我感到困惑。 重新编写numpy的数组只是访问生成的cv :: Mat“eigen”的单个通道的python方式。 以下代码是OpenCV的“texture_flow.py”的C ++版本(取自OpenCV 2.4.3)。生成的流图像与python版本不是100%相同,但它足够接近。

#include <opencv2/opencv.hpp>
#include <iostream>

int main (int argc, char** argv)
{
    cv::TickMeter tm;
    tm.start();
    cv::Mat img = cv::imread(argv[1]);
    cv::Mat gray = cv::Mat();
    cv::cvtColor(img, gray, CV_BGR2GRAY);
    // to preserve the original image
    cv::Mat flow = gray.clone();
    int width = img.cols;
    int height = img.rows;
    int graySize = width * height;
    // "brighten" the flow image 
    // C++ version of:
    // vis[:] = (192 + np.uint32(vis)) / 2
    for (unsigned int i=0; i<graySize; ++i)
    {
         flow.data[i] = (uchar)((192 + (int)flow.data[i]) / 2);
    }
    cv::Mat eigen = cv::Mat(height, width, CV_32FC(6));
    cv::cornerEigenValsAndVecs(gray, eigen, 15, 3);
    // this is the equivalent to all the numpy's reshaping etc. to 
    // generate the flow arrays
    // simply use channel 4 and 5 as the actual flow array in C++
    std::vector<cv::Mat> channels;
    cv::split(eigen, channels);

    int d = 12;
    cv::Scalar col(0, 0, 0);
    // C++ version of:
    // points =  np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
    // including the actual line drawing part
    for (unsigned int y=(d/2); y<flow.rows; y+=d)
    {
         for (unsigned int x=(d/2); x<flow.cols; x+=d)
         {
             if (x < flow.cols && y < flow.rows)
             {
                 cv::Point p(x, y);
                 float dx = channels[4].at<float>(p) * (d/2);
                 float dy = channels[5].at<float>(p) * (d/2);
                 cv::Point p0(p.x - dx, p.y - dy);
                 cv::Point p1(p.x + dx, p.y + dy);
                 cv::line(flow, p0, p1, col, 1);
              }
         }
    }
    tm.stop();
    std::cout<<"Flow image generated in "<<tm.getTimeMilli()<<" ms."<<std::endl;
    cv::imshow("FLOW", flow);
    cv::waitKey();
    return 0;
}