我想生成一个包含base和ggplot图形组合的图形。以下代码使用R:
的基本绘图功能显示我的图t <- c(1:(24*14))
P <- 24
A <- 10
y <- A*sin(2*pi*t/P)+20
par(mfrow=c(2,2))
plot(y,type = "l",xlab = "Time (hours)",ylab = "Amplitude",main = "Time series")
acf(y,main = "Autocorrelation",xlab = "Lag (hours)", ylab = "ACF")
spectrum(y,method = "ar",main = "Spectral density function",
xlab = "Frequency (cycles per hour)",ylab = "Spectrum")
require(biwavelet)
t1 <- cbind(t, y)
wt.t1=wt(t1)
plot(wt.t1, plot.cb=FALSE, plot.phase=FALSE,main = "Continuous wavelet transform",
ylab = "Period (hours)",xlab = "Time (hours)")
哪个生成
这些面板中的大多数看起来足以让我在报告中加入。但是,需要改进显示自相关的图。使用ggplot:
看起来好多了require(ggplot2)
acz <- acf(y, plot=F)
acd <- data.frame(lag=acz$lag, acf=acz$acf)
ggplot(acd, aes(lag, acf)) + geom_area(fill="grey") +
geom_hline(yintercept=c(0.05, -0.05), linetype="dashed") +
theme_bw()
然而,由于ggplot不是基本图形,我们无法将ggplot与布局或par(mfrow)结合使用。我怎样才能用ggplot生成的自相关图替换基本图形生成的自相关图?我知道如果我的所有数据都是用ggplot制作的话我可以使用grid.arrange但是如果只在ggplot中生成一个图,我该怎么做呢?
答案 0 :(得分:51)
使用gridBase包,只需添加2行即可。我想如果你想用网格做有趣的情节,你只需要理解和掌握视口。它实际上是网格包的基本对象。
vps <- baseViewports()
pushViewport(vps$figure) ## I am in the space of the autocorrelation plot
baseViewports()函数返回三个网格视口的列表。我在这里用图视口 与当前图的图形区域对应的视口。
以下是最终解决方案:
library(gridBase)
par(mfrow=c(2, 2))
plot(y,type = "l",xlab = "Time (hours)",ylab = "Amplitude",main = "Time series")
plot(wt.t1, plot.cb=FALSE, plot.phase=FALSE,main = "Continuous wavelet transform",
ylab = "Period (hours)",xlab = "Time (hours)")
spectrum(y,method = "ar",main = "Spectral density function",
xlab = "Frequency (cycles per hour)",ylab = "Spectrum")
## the last one is the current plot
plot.new() ## suggested by @Josh
vps <- baseViewports()
pushViewport(vps$figure) ## I am in the space of the autocorrelation plot
vp1 <-plotViewport(c(1.8,1,0,1)) ## create new vp with margins, you play with this values
require(ggplot2)
acz <- acf(y, plot=F)
acd <- data.frame(lag=acz$lag, acf=acz$acf)
p <- ggplot(acd, aes(lag, acf)) + geom_area(fill="grey") +
geom_hline(yintercept=c(0.05, -0.05), linetype="dashed") +
theme_bw()+labs(title= "Autocorrelation\n")+
## some setting in the title to get something near to the other plots
theme(plot.title = element_text(size = rel(1.4),face ='bold'))
print(p,vp = vp1) ## suggested by @bpatiste
答案 1 :(得分:15)
您可以将print命令与grob和viewport一起使用。
首先绘制基础图形,然后添加ggplot
library(grid)
# Let's say that P is your plot
P <- ggplot(acd, # etc... )
# create an apporpriate viewport. Modify the dimensions and coordinates as needed
vp.BottomRight <- viewport(height=unit(.5, "npc"), width=unit(0.5, "npc"),
just=c("left","top"),
y=0.5, x=0.5)
# plot your base graphics
par(mfrow=c(2,2))
plot(y,type #etc .... )
# plot the ggplot using the print command
print(P, vp=vp.BottomRight)
答案 2 :(得分:7)
我是gridGraphics包的粉丝。出于某种原因,我在使用gridBase时遇到了麻烦。
library(ggplot2)
library(gridGraphics)
data.frame(x = 2:10, y = 12:20) -> dat
plot(dat$x, dat$y)
grid.echo()
grid.grab() -> mapgrob
ggplot(data = dat) + geom_point(aes(x = x, y = y))
pushViewport(viewport(x = .8, y = .4, height = .2, width = .2))
grid.draw(mapgrob)
答案 3 :(得分:1)
cowplot
软件包具有recordPlot()
函数,用于捕获基本R图,以便可以将它们放到plot_grid()
函数中。
library(biwavelet)
library(ggplot2)
library(cowplot)
t <- c(1:(24*14))
P <- 24
A <- 10
y <- A*sin(2*pi*t/P)+20
plot(y,type = "l",xlab = "Time (hours)",ylab = "Amplitude",main = "Time series")
### record the previous plot
p1 <- recordPlot()
spectrum(y,method = "ar",main = "Spectral density function",
xlab = "Frequency (cycles per hour)",ylab = "Spectrum")
p2 <- recordPlot()
t1 <- cbind(t, y)
wt.t1=wt(t1)
plot(wt.t1, plot.cb=FALSE, plot.phase=FALSE,main = "Continuous wavelet transform",
ylab = "Period (hours)",xlab = "Time (hours)")
p3 <- recordPlot()
acz <- acf(y, plot=F)
acd <- data.frame(lag=acz$lag, acf=acz$acf)
p4 <- ggplot(acd, aes(lag, acf)) + geom_area(fill="grey") +
geom_hline(yintercept=c(0.05, -0.05), linetype="dashed") +
theme_bw()
### combine all plots together
plot_grid(p1, p4, p2, p3,
labels = 'AUTO',
hjust = 0, vjust = 1)
由reprex package(v0.2.1.9000)于2019-03-17创建