Scipy.Optimize Python

时间:2013-01-01 14:51:14

标签: python optimization scipy

我正在尝试优化我构建的模型的参数。它是一个非常简单的模型预测山的水径流。大学课程的一部分:

def model(params, snowProportion,temperature):
    '''
    Calculates predicted runoff.
    '''
    K = params[0]
    p = params[1]
    tempThresh = params[2]
    meltDays = np.where(temperature > tempThresh)[0]
    accum = snowProportion*0.
    for d in meltDays:
        water = K * snowProportion[d]
        n = np.arange(len(snowProportion)) - d
        m = p ** n
        m[np.where(n<0)]=0
        accum += m * water
    np.savetxt('2005predicted.dat', accum)

params = [2000, 0.96, 9]

我被告知要使用scipy.optimize.fmin_cg;

所以我认为我做了一些事情:

x = scipy.optimize.fmin_cg(model, params, args=[snowProportion, temperature])

我不断遇到错误:

TypeError: 'numpy.ndarray' object is not callable

所以我假设我需要他们在列表中 - 但我遇到了同样的问题:

TypeError: 'list' object is not callable

我想更好地估计这些参数。 SnowProportion和温度的形状(365,)

RMSE:

将numpy导入为np import scipy.optimize

def RMSE(params,temperature, snowProportion):
    '''
    Calculates the RMSE of a model from measured and predicted.
    '''
    measured = np.loadtxt('/home/david/Documents/HydroM/runoff2005.dat')
    K = params[0]
    p = params[1]
    tempThresh = params[2]
    meltDays = np.where(temperature > tempThresh)[0]
    predicted = snowProportion*0.
    for d in meltDays:
        water = K * snowProportion[d]
        n = np.arange(len(snowProportion)) - d
        m = p ** n
        m[np.where(n<0)]=0
        predicted += m * water
    err = np.sqrt((measured - predicted) ** 2).mean()
    return err

1 个答案:

答案 0 :(得分:0)

scipy.optimize.fmin_cg的第一个参数 - 在您的代码中命名为model - 应该代表您想要最小化的函数(可能是您的模型估计的错误与给定的集合参数与某些参考值相比 ...) 具体来说,它应该是返回标量值的函数 算法需要知道模型在给定的一组参数下的“良好”程度。