我刚开始学习常见的lisp,所以我一直在研究项目的euler问题。这是我的解决方案(在https://github.com/qlkzy/project-euler-cl的帮助下)。你们对风格的变化有什么建议吗?有什么建议让它变得更加流行?
; A palindromic number reads the same both ways. The largest palindrome made
; from the product of two 2-digit numbers is 9009 = 91 99.
; Find the largest palindrome made from the product of two 3-digit numbers.
(defun num-to-list (num)
(let ((result nil))
(do ((x num (truncate x 10)))
((= x 0 ) result)
(setq result (cons (mod x 10) result)))))
(defun palindrome? (num)
(let ((x (num-to-list num)))
(equal x (reverse x))))
(defun all-n-digit-nums (n)
(loop for i from (expt 10 (1- n)) to (1- (expt 10 n)) collect i))
(defun all-products-of-n-digit-nums (n)
(let ((nums (all-n-digit-nums n)))
(loop for x in nums
appending (loop for y in nums collecting (* x y)))))
(defun all-palindromes (n)
(let ((nums (all-products-of-n-digit-nums n)))
(loop for x in nums
when (palindrome? x) collecting x)))
(defun largest-palindrome (n)
(apply 'max (all-palindromes 3)))
(print (largest-palindrome 3))
答案 0 :(得分:1)
Barnar的解决方案非常棒,但只有一个小错字,要返回应该是的结果:
(defun largest-palindrome (n)
(loop with start = (expt 10 (1- n))
and end = (1- (expt 10 n))
for i from start to end
maximize (loop for j from i to end
for num = (* i j)
when (palindrome? num)
maximize num)))
答案 1 :(得分:0)
(setq list (cons thing list))
可以简化为:
(push thing list)
我对你的代码的其他评论并不是关于算法的Lisp风格。创建所有这些中间数字列表似乎是一种不好的方法,只需编写嵌套循环来计算和测试数字。
(defun all-palindromes (n)
(loop for i from (expt 10 (1- n)) to (1- (expt 10 n))
do (loop for j from (expt 10 (1- n)) to (1- (expt 10 n))
for num = (* i j)
when (palindrome? num)
collect num)))
但LOOP
有一个您可以使用的功能:MAXIMIZE
。因此,您可以:
COLLECT
收集列表中的所有palindrom
(defun largest-palindrome (n)
(loop with start = (expt 10 (1- n))
and end = (1- (expt 10 n))
for i from start to end
do (loop for j from start to end
for num = (* i j)
when (palindrome? num)
maximize num)))
这是另一个优化:
(defun largest-palindrome (n)
(loop with start = (expt 10 (1- n))
and end = (1- (expt 10 n))
for i from start to end
do (loop for j from i to end
for num = (* i j)
when (palindrome? num)
maximize num)))
使内部循环从i
而不是start
开始,避免了检查M*N
和N*M
的冗余。
答案 2 :(得分:0)
下面的例子有点人为,但它比原始方法的迭代次数少得多:
(defun number-to-list (n)
(loop with i = n
with result = nil
while (> i 0) do
(multiple-value-bind (a b)
(floor i 10)
(setf i a result (cons b result)))
finally (return result)))
(defun palindrome-p (n)
(loop with source = (coerce n 'vector)
for i from 0 below (floor (length source) 2) do
(when (/= (aref source i) (aref source (- (length source) i 1)))
(return))
finally (return t)))
(defun suficiently-large-palindrome-of-3 ()
;; This is a fast way to find some sufficiently large palindrome
;; that fits our requirement, but may not be the largest
(loop with left = 999
with right = 999
for maybe-palindrome = (number-to-list (* left right)) do
(cond
((palindrome-p maybe-palindrome)
(return (values left right)))
((> left 99)
(decf left))
((> right 99)
(setf left 999 right (1- right)))
(t ; unrealistic situation
; we didn't find any palindromes
; which are multiples of two 3-digit
; numbers
(return)))))
(defun largest-palindrome-of-3 ()
(multiple-value-bind (left right)
(suficiently-large-palindrome-of-3)
(loop with largest = (* left right)
for i from right downto left do
(loop for j from 100 to 999
for maybe-larger = (* i j) do
(when (and (> maybe-larger largest)
(palindrome-p (number-to-list maybe-larger)))
(setf largest maybe-larger)))
finally (return largest)))) ; 906609
它还会尝试优化您检查该数字是回文的方式,但需要额外的内存成本。它还使用稍长的代码将数字拆分成一个列表,但减少了划分(这在某种程度上是计算上的代价)。
整个想法是基于这样的概念:最大的回文将更多地朝向......最大的乘数,所以,从99 * 99开始,你会有很多不好的匹配。相反,它试图从999 * 999开始,并首先找到一些看起来很好的回文,这样做是以“马虎”的方式进行的。然后它努力改进最初的发现。