从2个向量中寻找最佳匹配的成对点

时间:2012-12-19 21:28:23

标签: r matrix distance

我有2个点,X,Y坐标点。 列表1包含的点数多于列表2.

任务是以整体欧几里德距离最小化的方式找到成对的点。

我有一个工作代码,但我不知道这是否是最好的方法,我想得到提示我可以改进结果(更好的算法找到最小值)或速度,因为列表是关于每个2000个元素。

实现样本向量中的回合以获得具有相同距离的点。 使用“rdist”功能,所有距离都以“距离”生成。比矩阵中的最小值用于链接2点(“dist_min”)。这两个点的所有距离现在都被NA替换,并且循环继续搜索下一个最小值,直到列表2的所有点都具有来自列表1的点。 最后,我添加了一个可视化图。

require(fields)

set.seed(1)
x1y1.data <- matrix(round(runif(200*2),2), ncol = 2)   # generate 1st set of points 
x2y2.data <- matrix(round(runif(100*2),2), ncol = 2)   # generate 2nd set of points

distances <- rdist(x1y1.data, x2y2.data)
dist_min <- matrix(data=NA,nrow=ncol(distances),ncol=7)   # prepare resulting vector with 7 columns

for(i in 1:ncol(distances)) 
{
    inds <- which(distances == min(distances,na.rm = TRUE), arr.ind=TRUE)

    dist_min[i,1] <- inds[1,1]              # row of point(use 1st element of inds if points have same distance)
    dist_min[i,2] <- inds[1,2]              # column of point (use 1st element of inds if points have same distance)
    dist_min[i,3] <- distances[inds[1,1],inds[1,2]] # distance of point
    dist_min[i,4] <- x1y1.data[inds[1,1],1]     # X1 ccordinate of 1st point
    dist_min[i,5] <- x1y1.data[inds[1,1],2]     # Y1 coordinate of 1st point
    dist_min[i,6] <- x2y2.data[inds[1,2],1]     # X2 coordinate of 2nd point
    dist_min[i,7] <- x2y2.data[inds[1,2],2]     # Y2 coordinate of 2nd point

    distances[inds[1,1],] <- NA # remove row (fill with NA), where minimum was found
    distances[,inds[1,2]] <- NA # remove column (fill with NA), where minimum was found
}

# plot 1st set of points
# print mean distance as measure for optimization
plot(x1y1.data,col="blue",main="mean of min_distances",sub=mean(dist_min[,3],na.rm=TRUE))       
points(x2y2.data,col="red")                         # plot 2nd set of points
segments(dist_min[,4],dist_min[,5],dist_min[,6],dist_min[,7])   # connect pairwise according found minimal distance

output with min distance

1 个答案:

答案 0 :(得分:9)

这是组合优化中的一个基本问题,称为assignment problem。解决分配问题的一种方法是Hungarian algorithm,它在R包线索中实现:

require(clue)
sol <- solve_LSAP(t(distances))

我们可以验证它优于天真的解决方案:

mean(dist_min[,3])
# [1] 0.05696033
mean(sqrt(
  (x2y2.data[,1] - x1y1.data[sol, 1])^2 +  
    (x2y2.data[,2] - x1y1.data[sol, 2])^2))
#[1] 0.05194625

我们可以在你的问题中构建一个类似的情节:

plot(x1y1.data,col="blue")       
points(x2y2.data,col="red")
segments(x2y2.data[,1], x2y2.data[,2], x1y1.data[sol, 1], x1y1.data[sol, 2])

enter image description here