手动编写线性编程练习

时间:2012-12-05 06:24:46

标签: algorithm language-agnostic pseudocode linear-programming

我在课堂上一直在做线性编程问题,但是我想知道如何编写一个特定问题的程序来解决它。如果有太多的变量或约束,我永远无法通过绘图来做到这一点。

示例问题,使用约束最大化5x + 3y:

  • 5x - 2y> = 0
  • x + y <= 7
  • x <= 5
  • x&gt; = 0
  • y&gt; = 0

我画了这个并且得到了一个有3个角的可见区域。 x = 5 y = 2是最佳点。

如何将其转换为代码?我知道单纯形法。而且非常重要的是,所有LP问题都会被编码在同一个结构中吗?蛮力有用吗?

2 个答案:

答案 0 :(得分:6)

如果你搜索,你会发现很多Simplex实现。

除了评论中提到的那个(C中的数字食谱), 你也可以找到:

  1. Google's own Simplex-Solver
  2. 然后有COIN-OR
  3. GNU有自己的GLPK
  4. 如果您想要一个C ++实现,Google Code中的这个实际上是可访问的。
  5. R中有许多实现,包括boot package。 (在R中,您可以通过在没有括号的情况下键入函数来查看函数的实现。)
  6. 解决你的另外两个问题:

    1. 是否所有LP都以相同的方式编码?是的,可以编写通用LP解算器来加载和解决任何LP。 (阅读LP的行业标准格式有mps.lp

    2. 蛮力工作?请记住,许多公司和大型组织花费很长时间来对解算器进行微调。有些LP具有许多解算器试图利用的有趣属性。而且,某些计算可以并行解决。该算法是指数的,因此在一些大量的变量/约束条件下,蛮力不会起作用。

    3. 希望有所帮助。

答案 1 :(得分:0)

我昨天写的这是matlab,如果使用Eigen库或使用std :: vector的std :: vector编写自己的矩阵类,可以很容易地将其转录为C ++

function [x, fval] = mySimplex(fun, A, B, lb, up)

%Examples paramters to show that the function actually works 

% sample set 1 (works for this data set)

% fun = [8 10 7];
% A = [1 3 2; 1 5 1];
% B = [10; 8];
% lb = [0; 0; 0];
% ub = [inf; inf; inf];

% sample set 2 (works for this data set)

fun = [7 8 10];
A = [2 3 2; 1 1 2];
B = [1000; 800];
lb = [0; 0; 0];
ub = [inf; inf; inf];


% generate a new slack variable for every row of A 

numSlackVars = size(A,1); % need a new slack variables for every row of A 

% Set up tableau to store algorithm data 
tableau = [A; -fun];

tableau = [tableau, eye(numSlackVars + 1)];

lastCol = [B;0];

tableau = [tableau, lastCol];

% for convienience sake, assign the following: 

numRows = size(tableau,1);
numCols = size(tableau,2);

% do simplex algorithm 

% step 0: find num of negative entries in bottom row of tableau 

numNeg = 0; % the number of negative entries in bottom row

for i=1:numCols 
    if(tableau(numRows,i) < 0)
        numNeg = numNeg + 1;
    end
end

% Remark: the number of negatives is exactly the number of iterations needed in the
% simplex algorithm 

for iterations = 1:numNeg 
    % step 1: find minimum value in last row 
    minVal = 10000; % some big number 
    minCol = 1; % start by assuming min value is the first element 
    for i=1:numCols
        if(tableau(numRows, i) < minVal)
            minVal = tableau(size(tableau,1), i);
            minCol = i; % update the index corresponding to the min element 
        end
    end 

    % step 2: Find corresponding ratio vector in pivot column 
    vectorRatio = zeros(numRows -1, 1);
    for i=1:(numRows-1) % the size of ratio vector is numCols - 1
        vectorRatio(i, 1) = tableau(i, numCols) ./ tableau(i, minCol);
    end 

    % step 3: Determine pivot element by finding minimum element in vector
    % ratio

    minVal = 10000; % some big number 
    minRatio = 1; % holds the element with the minimum ratio 

    for i=1:numRows-1
        if(vectorRatio(i,1) < minVal)
            minVal = vectorRatio(i,1);
            minRatio = i;
        end 
    end 

    % step 4: assign pivot element 

    pivotElement = tableau(minRatio, minCol);

    % step 5: perform pivot operation on tableau around the pivot element 

    tableau(minRatio, :) = tableau(minRatio, :) * (1/pivotElement);

    % step 6: perform pivot operation on rows (not including last row)

    for i=1:size(vectorRatio,1)+1 % do last row last 
        if(i ~= minRatio) % we skip over the minRatio'th element of the tableau here 
            tableau(i, :) = -tableau(i,minCol)*tableau(minRatio, :) +  tableau(i,:);
        end
    end
end 

% Now we can interpret the algo tableau 

numVars = size(A,2); % the number of cols of A is the number of variables 

x = zeros(size(size(tableau,1), 1)); % for efficiency 

% Check for basicity 
for col=1:numVars
    count_zero = 0;
    count_one = 0;
    for row = 1:size(tableau,1)
        if(tableau(row,col) < 1e-2)
            count_zero = count_zero + 1;
        elseif(tableau(row,col) - 1 < 1e-2)
            count_one = count_one + 1;
            stored_row = row; % we store this (like in memory) column for later use 
        end
    end
    if(count_zero == (size(tableau,1) -1) && count_one == 1) % this is the case where it is basic 
        x(col,1) = tableau(stored_row, numCols);
    else 
        x(col,1) = 0; % this is the base where it is not basic 
    end
end

% find function optimal value at optimal solution 
fval = x(1,1) * fun(1,1); % just needed for logic to work here 
for i=2:numVars 
    fval = fval + x(i,1) * fun(1,i);
end


end