我有一些群集中心和一些数据点。我想计算下面的距离(标准是欧几里德距离):
costsTmp = zeros(NObjects,NClusters);
lambda = zeros(NObjects,NClusters);
for clustclust = 1:NClusters
for objobj = 1:NObjects
costsTmp(objobj,clustclust) = norm(curCenters(clustclust,:)-curPartData(objobj,:),'fro');
lambda(objobj,clustclust) = (costsTmp(objobj,clustclust) - log(si1(clustclust,objobj)))/log(si2(objobj,clustclust));
end
end
如何对此代码段进行矢量化? 感谢
答案 0 :(得分:2)
试试这个:
Difference = zeros(NObjects,NClusters);
costsTmp = zeros(NObjects,NClusters);
lambda = zeros(NObjects,NClusters);
for clustclust = 1:NClusters
repeated_curCenter = repmat(curCenter(clustclust,:), NObjects, 1);
% ^^ This creates a repeated matrix of 1 cluster center but with NObject
% rows. Now, dimensions of repeated_curCenter equals that of curPartData
Difference(:,clustclust) = repeated_curCenter - curPartData;
costsTmp(:,clustclust) = sqrt(sum(abs(costsTmp(:,clustclust)).^2, 1)); %Euclidean norm
end
方法是尝试制作相同尺寸的矩阵。您可以通过制作2个3D数组来扩展此概念,从而消除现在的for循环:
costsTmp =零(NObjects,NClusters); lambda =零(NObjects,NClusters);
%Assume that number of dimensions for data = n
%curCenter's dimensions = NClusters x n
repeated_curCenter = repmat(curCenter, 1, 1, NObjects);
%repeated_curCenter's dimensions = NClusters x n x NObjects
%curPartData's dimensions = NObject x n
repeated_curPartData = repmat(curPartData, 1, 1, NClusters);
%repeated_curPartData's dimensions = NObjects x n x NClusters
%Alligning the matrices along similar dimensions. After this, both matrices
%have dimensions of NObjects x n x NClusters
new_repeated_curCenter = permute(repeated_curCenter, [3, 2, 1]);
Difference = new_repeated_curCenter - repeated_curPartData;
Norm = sqrt(sum(abs(Difference)).^2, 2); %sums along the 2nd dimensions i.e. n
%Norm's dimensions are now NObjects x 1 x NClusters.
Norm = permute(Norm, [1, 3, 2]);
在这里,Norm有点像costsTmp,只是有额外的尺寸。我没有提供lambda的代码。我也不知道lambda在问题的代码中是什么。
答案 1 :(得分:2)
使用bsxfun
可以非常优雅地完成此向量化(如果我可以这么说)。任何repmat
costsTemp = bsxfun( @minus, permute( curCenters, [1 3 2] ), ...
permute( curPartData, [3 1 2] ) );
% I am not sure why you use Frobenius norm, this is the same as Euclidean norm for vector
costsTemp = sqrt( sum( costsTemp.^2, 3 ) ); % now we have the norms
lambda = costsTmp -reallog(si1)./reallog(si2);
您可能需要使用permute
维度向量的顺序进行一些操作,以使输出完全相同(就转置而言)。