Python。 matplotlib :如何有效地将大量线段着色为独立渐变?
已经阅读this和this以及其他内容;没有一个是我们的答案!
我们有许多单独的线希望以渐变颜色绘制每个线。
如果您有多个字符串,则上面第一个链接中提到的解决方案不起作用。换句话说,改变颜色循环会影响绘图中的所有内容,而不是唯一感兴趣的行。 这根本不是我们感兴趣的。
matplotlib网站的第二个链接使用每行的分段为多个。这不是一个好方法,因为对于大量的线路,比如说10000甚至更多;即使你每行只选择10个段,结果也太大了!即便如此,生成的线条根本没有平滑的颜色!如果您将分段数量作为线段的函数以获得更好的渐变,那么结果将非常巨大!难以显示,难以正确保存为文件。
答案 0 :(得分:8)
一次(次要)加速将添加单行集合而不是10000个单独的行集合。
只要所有线条共享相同的色彩映射表,您就可以将它们分组为单个行集合,并且每个行集合仍然可以具有独立的渐变。
Matplotlib对于这类事情仍然很慢。它针对高质量输出进行了优化,而不是快速绘制时间。但是,你可以加快速度(约3倍)。
所以,作为我认为你现在可能(?)这样做的一个例子:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 2, 3
lines = np.random.random((numlines, numpoints, 2))
fig, ax = plt.subplots()
for line in lines:
# Add "num" additional segments to the line
segments, color_scalar = interp(line, num=20)
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
plt.show()
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()
相反,我会建议在这些方面做一些事情(唯一的区别在于main
函数):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 2, 3
points = np.random.random((numlines, numpoints, 2))
# Add "num" additional segments to each line
segments, color_scalar = zip(*[interp(item, num=20) for item in points])
segments = np.vstack(segments)
color_scalar = np.hstack(color_scalar)
fig, ax = plt.subplots()
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
plt.show()
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()
两个版本都会产生相同的情节:
如果我们将行数增加到10000,我们将开始看到性能的显着差异。
使用10000行,每行3个点,并在整个颜色渐变中插入额外的20个点(每行23个段),并查看将图形保存到png所需的时间:
Took 10.866694212 sec with a single collection
Took 28.594727993 sec with multiple collections
因此,在这种特殊情况下,使用单行收集将会少于3倍的加速。它不是一流的,但它总比没有好。
这是时间码和输出数字,无论它的价值如何(由于图纸的顺序不同,输出数字不完全相同。如果你需要控制z级别,你必须坚持分开行集合):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
import time
# Make random number generation consistent between runs
np.random.seed(5)
def main():
numlines, numpoints = 10000, 3
lines = np.random.random((numlines, numpoints, 2))
# Overly simplistic timing, but timeit is overkill for this exmaple
tic = time.time()
single_collection(lines).savefig('/tmp/test_single.png')
toc = time.time()
print 'Took {} sec with a single collection'.format(toc-tic)
tic = time.time()
multiple_collections(lines).savefig('/tmp/test_multiple.png')
toc = time.time()
print 'Took {} sec with multiple collections'.format(toc-tic)
def single_collection(lines):
# Add "num" additional segments to each line
segments, color_scalar = zip(*[interp(item, num=20) for item in lines])
segments = np.vstack(segments)
color_scalar = np.hstack(color_scalar)
fig, ax = plt.subplots()
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
return fig
def multiple_collections(lines):
fig, ax = plt.subplots()
for line in lines:
# Add "num" additional segments to the line
segments, color_scalar = interp(line, num=20)
coll = LineCollection(segments)
coll.set_array(color_scalar)
ax.add_collection(coll)
return fig
def interp(data, num=20):
"""Add "num" additional points to "data" at evenly spaced intervals and
separate into individual segments."""
x, y = data.T
dist = np.hypot(np.diff(x - x.min()), np.diff(y - y.min())).cumsum()
t = np.r_[0, dist] / dist.max()
ti = np.linspace(0, 1, num, endpoint=True)
xi = np.interp(ti, t, x)
yi = np.interp(ti, t, y)
# Insert the original vertices
indices = np.searchsorted(ti, t)
xi = np.insert(xi, indices, x)
yi = np.insert(yi, indices, y)
return reshuffle(xi, yi), ti
def reshuffle(x, y):
"""Reshape the line represented by "x" and "y" into an array of individual
segments."""
points = np.vstack([x, y]).T.reshape(-1,1,2)
points = np.concatenate([points[:-1], points[1:]], axis=1)
return points
if __name__ == '__main__':
main()