有人可以滥用LINQ并解决这个钱难题吗?

时间:2009-08-29 22:04:52

标签: c# linq math

为了它的乐趣,我希望看到有人使用和滥用LINQ来解决这个钱问题。 我真的不知道你会怎么做 - 我想填充一些然后选择它。

如果给出总金额并将所有硬币的总金额加在一起: 显示每种可能的硬币组合。硬币是四分之一(.25),尺寸(.10)镍(.05)和便士(.01)

包含该选项,以便硬币类型可以为零,或者每个硬币必须至少有1个。

示例问题:如果我有19个硬币,硬币加起来为1.56美元,每种硬币必须至少有1个。

答案是:

  

1个季度,9个尺寸,8个镍,1个便士

     

2个宿舍,5个角,11个镍,1个便士

     

2个季度,9个尺寸,2个镍,6个便士

     

3个季度,1个维度,14个镍币,1个便士

     

3个季度,5个维度,5个镍币,6个便士

     

4个季度,1个角度,8个镍币,6个便士

     

5个季度,1个维度,2个镍币,11个便士

如果我们允许零注意,我们允许额外获得 0个季度,13个尺寸,5个镍,1个便士

以下是一些使用强力方法解决问题的示例C#代码。 不要费心改进样本,让我们看看使用Linq的解决方案。 //如果可能的话,尽量不要使用任何regualar c#循环代码。

private void SolveCoinProblem(int totalNumberOfCoins, double totalAmount, int minimumNumberOfEachCoin)
    {
        int foundCount = 0;
        long numberOfTries = 0;
        Console.WriteLine(String.Format("Solving Coin Problem:TotalNumberOfCoins={0}TotalAmount={1}MinimumNumberOfEachCoin{2}", totalNumberOfCoins, totalAmount, minimumNumberOfEachCoin));
        for (int totalQuarters = minimumNumberOfEachCoin; totalQuarters < totalNumberOfCoins; totalQuarters++)
        {
            for (int totalDimes = minimumNumberOfEachCoin; totalDimes < totalNumberOfCoins; totalDimes++)
            {
                for (int totalNickels = minimumNumberOfEachCoin; totalNickels < totalNumberOfCoins; totalNickels++)
                {
                    for (int totalPennies = minimumNumberOfEachCoin; totalPennies < totalNumberOfCoins; totalPennies++)
                    {
                        numberOfTries++;
                        if (totalQuarters + totalDimes + totalNickels + totalPennies == totalNumberOfCoins)
                        {
                            if (Math.Round((totalQuarters * .25) + (totalDimes * .10) + (totalNickels * .05) + (totalPennies * .01),2) == totalAmount)
                            {
                                Console.WriteLine(String.Format("{0} Quarters, {1} Dimes, {2} Nickels, {3} Pennies", totalQuarters, totalDimes, totalNickels, totalPennies));
                                foundCount++;
                            }
                        }
                    }
                }
            }
        }
        Console.WriteLine(String.Format("{0} Combinations Found. We tried {1} combinations.", foundCount, numberOfTries));
    }

1 个答案:

答案 0 :(得分:21)

未经测试,但是:

        int minQuarters = 1, minDimes = 1,
            minNickels = 1, minPennies = 1,
            maxQuarters = 19, maxDimes = 19,
            maxNickels = 19, maxPennies = 19,
            coinCount = 19, total = 156;
        var qry = from q in Enumerable.Range(minQuarters, maxQuarters)
                  from d in Enumerable.Range(minDimes, maxDimes)
                  from n in Enumerable.Range(minNickels, maxNickels)
                  from p in Enumerable.Range(minPennies, maxPennies)
                  where q + d + n + p == coinCount
                  where q * 25 + d * 10 + n * 5 + p == total
                  select new {q,d,n,p};
        foreach (var row in qry)
        {
            Console.WriteLine("{0} quarter(s), {1} dime(s), {2} nickel(s) and {3} pennies",
                row.q, row.d, row.n, row.p);
        }

实际上,出于零售目的 - 也许更好的问题是“我能发出的最少的钱币是什么”?替换为:

...
from p in Enumerable.Range(minPennies, maxPennies)
where q + d + n + p <= coinCount
where q * 25 + d * 10 + n * 5 + p == total
orderby q + d + n + p
...

并使用First()Take(...) ;-p

您还可以通过在q测试中减去(例如)maxDimes来减少已检查案例的数量(依此类推......) - 类似于(简化):

        int minCount = 1,
            coinCount = 19, total = 156;
        var qry = from q in Enumerable.Range(minCount, coinCount - (3 * minCount))
                  where q * 25 <= total
                  from d in Enumerable.Range(minCount, coinCount - (q + (2 * minCount)))
                  where q * 25 + d * 10 <= total
                  from n in Enumerable.Range(minCount, coinCount - (q + d + minCount))
                  where q * 25 + d * 10 + n * 5 <= total
                  from p in Enumerable.Range(minCount, coinCount - (q + d + n))
                  where q + d + n + p == coinCount
                  where q * 25 + d * 10 + n * 5 + p == total
                  select new { q, d, n, p };