我试图在MATLAB中从采样信号中产生一系列“听觉尖峰”,到目前为止我实现的方法很慢。太慢了。
在http://patrec.cs.tu-dortmund.de/pubs/papers/Plinge2010-RNF.pdf的第II节B中生成尖峰:检测过零点并对每对之间信号的(平方根压缩)正部分求和。这给出了每个尖峰的高度。通过识别每对过零点之间的最大值的样本来找到它们的位置。
我想到了使用accumarray(...),这让我想到了生成一个矩阵,其中每列代表一对零交叉(一个尖峰),每一行代表一个样本。然后用相应的零交叉对之间的每一列填充每列。
当前实现从实际数据向量填充这些列,因此我们之后不必使用accumarray。
目前的实施:
function out = audspike(data)
% Find the indices of the zero crossings. Two types of zero crossing:
% * Exact, samples where data == 0
% * Change, where data(i) .* data(i+1) < 0; that is, data changes sign
% between two samples. In this implementation i+1 is returned as the
% index of the zero crossing.
zExact = (data == 0);
zChange = logical([0; data(1:end-1) .* data(2:end) < 0]);
zeroInds = find(zExact | zChange);
% Vector of the difference between each zero crossing index
z=[zeroInds(1)-1; diff(zeroInds)];
% Find the "number of zeros" it takes to move from the first sample to the
% a given zero crossing
nzeros=cumsum(z);
% If the first sample is positive, we cannot generate a spike for the first
% pair of zero crossings as this represents part of the signal that is
% negative; therefore, skip the first zero crossing and begin pairing from
% the second
if data(1) > 0
nzeros = nzeros(2:2:end);
nones = z(3:2:end)+1;
else
nzeros = nzeros(1:2:end);
nones = z(2:2:end)+1;
end
% Allocate sparse array for result
G = spalloc(length(data), length(nzeros), sum(nones));
% Loop through pairs of zero crossings. Each pair gets a column in the
% resultant matrix. The number of rows of the matrix is the number of
% samples. G(n, ii) ~= 0 indicates that sample n belongs to pair ii
for ii = 1:min(length(nzeros), length(nones))
sampleInd = nzeros(ii)+1:nzeros(ii)+nones(ii)-1;
G(sampleInd, ii) = data(sampleInd);
end
% Sum the square root-compressed positive parts of signal between each zero
% crossing
height = sum(sqrt(G), 2);
% Find the peak over average position
[~, pos] = max(G, [], 2);
out = zeros(size(data));
out(pos) = height;
end
正如我所说,这很慢,一次只适用于一个频道。缓慢的部分是(不出所料)循环。如果我将矩阵G的分配更改为标准零(...)而不是稀疏数组,则慢速部分将成为总和(...)和最大(...)计算,原因显而易见。
如何更有效地完成这项工作?我不反对编写MEX函数,如果这就是它需要的东西。
答案 0 :(得分:0)
我现在创建了一个MEX函数,它执行与上面代码相同的任务,除了最后三行,它们几乎不需要修改就可以使用MEX函数了。这种方法快了几个数量级。
以下是代码,供参考:
#include "mex.h"
#include "matrix.h"
/*=======================
* Output arguments
*=======================
*/
#define OUT_zCross plhs[0]
#define OUT_sums plhs[1]
#define OUT_maxes plhs[2]
/*=======================
* Input arguments
*=======================
*/
#define IN_x prhs[0]
#define IN_fs prhs[1]
#define myMax(x,y) ( ( x ) > ( y ) ? ( x ) : ( y ) )
/*=======================
* Main Function
*=======================
*/
void mexFunction ( int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[] )
{
/* params: signal vector;
outputs: indices (one-based) of the zero crossings,
sum of positive values between each pair of zero crossings, and the indices
(one-based) of the maximum element between each pair
*/
double *x = NULL;
double *zCross = NULL;
double *sums = NULL;
double *maxes = NULL;
double curMax = 0;
unsigned int curMaxPos = 0;
int Fs = 0;
unsigned int nZeroCrossings = 0;
unsigned int nPeaks = 0;
unsigned int nSamples = 0;
unsigned int i = 0, j = 0, t = 0;
bool bIgnoreFirst = false;
bool bSum = false;
// Get signal and its size
x = mxGetPr(IN_x);
i = mxGetN (IN_x);
j = mxGetM (IN_x);
if (i>1 && j>1) {
mexPrintf ( "??? Input x must be a vector.\n" );
return;
}
// Length of vector
nSamples = myMax (i, j);
zCross = mxCalloc(nSamples, sizeof(double));
sums = mxCalloc(nSamples, sizeof(double));
maxes = mxCalloc(nSamples, sizeof(double));
if (x[0] > 0)
{
/* If the first sample is positive, we cannot generate a spike for the first
pair of zero crossings as this represents part of the signal that is
negative; therefore, skip the first zero crossing and begin pairing from
the second */
bIgnoreFirst = true;
}
else if (x[0] == 0)
{
// Begin summation from first element
bSum = true;
nZeroCrossings = 1;
sums[0] = x[0];
curMax = x[0];
curMaxPos = 0;
}
for (t = 1; t < nSamples; ++t)
{
// Look for a zero-crossing
if (x[t] * x[t-1] < 0 || (x[t] == 0 && x[t-1] != 0))
{
bool bIgnore = false;
// If not the first one, we can safely flip the boolean flag
if (nZeroCrossings != 0)
{
bSum = !bSum;
}
else if (!bIgnoreFirst)
{
// If not, make sure we're not supposed to ignore the first one
bSum = true;
}
else
{
bIgnore = true;
}
// Store the zero-crossing index
zCross[nZeroCrossings] = t+1;
// If this crossing terminated the summation, store and reset the position of the max. element
if (!bSum && !bIgnore)
{
maxes[nPeaks] = curMaxPos+1;
curMax = 0;
curMaxPos = 0;
++nPeaks;
}
++nZeroCrossings;
}
if (bSum)
{
sums[nPeaks] += x[t];
if (x[t] > curMax)
{
curMax = x[t];
curMaxPos = t;
}
}
}
// Allocate outputs
OUT_zCross = mxCreateNumericMatrix(0, 0, mxDOUBLE_CLASS, mxREAL);
OUT_sums = mxCreateNumericMatrix(0, 0, mxDOUBLE_CLASS, mxREAL);
OUT_maxes = mxCreateNumericMatrix(0, 0, mxDOUBLE_CLASS, mxREAL);
mxSetPr(OUT_zCross, zCross);
mxSetM(OUT_zCross, nZeroCrossings);
mxSetN(OUT_zCross, 1);
mxSetPr(OUT_sums, sums);
mxSetM(OUT_sums, nPeaks);
mxSetN(OUT_sums, 1);
mxSetPr(OUT_maxes, maxes);
mxSetM(OUT_maxes, nPeaks);
mxSetN(OUT_maxes, 1);
return;
}