我有一个简单的函数来计算下面的第n个斐波纳契数:
fibonacci :: Integer -> Integer
fibonacci 0 = 0
fibonacci 1 = 1
fibonacci n = (fibonacci (n-1) ) + (fibonacci (n-2))
但我感兴趣的是计算此函数递归次数的方法。任何想法怎么做?
答案 0 :(得分:6)
这会让人想到sigfpe
的{{3}}。你可以这样系统地做这样的事情:
import Control.Monad.Trans.Writer
import Control.Monad.Trans
import Data.Monoid
fibwriter :: Int -> Writer (Sum Int) Integer
fibwriter 0 = return 0
fibwriter 1 = return 1
fibwriter n = do a <- fibwriter (n-1)
b <- fibwriter (n-2)
tell (Sum (2::Int))
return (a + b)
因此使用:
*Fib> runWriter $ fibwriter 11
(89,Sum {getSum = 286})
这是相同的定义,但是记录每一对额外递归的“副作用”。我们还可以在IO
中添加副作用,如果我们想要看到“天真”定义中涉及的所有疯狂重新计算:
fibprint :: Int -> WriterT (Sum Int) IO Integer
fibprint 0 = return 0
fibprint 1 = return 1
fibprint n = do a <- fibprint (n-1)
record a
b <- fibprint (n-2)
record b
return (a + b)
where record x = lift (putStr $ ' ' : show x) >> tell (Sum 1)
对于斐波那契11,这给了我们这个荒谬的重复节目,因为计算上升到了89:
*Fib> runWriterT $ fibprint 11
1 0 1 1 2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 1 0 1 1 2 1 0 1 3 1 0
1 1 2 5 13 1 0 1 1 2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 21 1 0 1 1
2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 1 0 1 1 2 1 0 1 3 1 0 1 1 2 5
13 34 1 0 1 1 2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 1 0 1 1 2 1 0 1
3 1 0 1 1 2 5 13 1 0 1 1 2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 21 55
1 0 1 1 2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 1 0 1 1 2 1 0 1 3 1 0
1 1 2 5 13 1 0 1 1 2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 21 1 0 1 1
2 1 0 1 3 1 0 1 1 2 5 1 0 1 1 2 1 0 1 3 8 1 0 1 1 2 1 0 1 3 1 0 1 1 2 5
13 34(89,Sum {getSum = 286})
答案 1 :(得分:5)
recursions :: Integer -> Integer
recursions 0 = 0
recursions 1 = 0
recursions n = recursions (n-1) + recursions (n-2) + 2
对于基本情况,没有递归,对于其他一切,我们有两个直接递归调用和从两个调用的那些。
您还可以重复使用fibonacci
代码
recursions n = 2*fibonacci (n+1) - 2