Python中的“Eratosthenes的真正筛选” - 为什么heapq比dict慢?

时间:2012-11-19 22:25:40

标签: python performance heap sieve-of-eratosthenes

M. O'Neill's great paper之后,我尝试在Python中实现一些懒惰的无限版Sierat of Eratosthenes。我惊讶地发现,基于堆的版本,论文声称应该运行得更快,实际上对我来说实际上要慢两倍。

本文包含两个例子,一个基于dict,我已经翻译过(来自Haskell):

from itertools import count
def dict_sieve():
    yield 2
    yield 3
    candidates = count(5, 2)
    composites = {9:{3}}  # map composites to their prime factors

    for candidate in candidates:
        try:
            factors = composites.pop(candidate)
        except KeyError:  # if it's not in the dict, it's prime
            yield candidate
            composites[candidate**2] = {candidate}  # Euler's optimization: start from prime**2
        else:
            for prime in factors:  # go through the prime factors and increment their keys
                try:
                    composites[candidate+prime*2].add(prime)  # use prime*2 because we are ignoring evens
                except KeyError:
                    composites[candidate+prime*2] = {prime}

本文中的第二个示例演示了如何使用优先级队列作为数据结构。它也使用惰性列表,而不是简单的增量,我没有为了公平测试而做。 (此外,我使用itertools.count的实例作为我的懒惰列表,我发现它运行得稍慢一点。)

from itertools import count
from heapq import heappush, heapreplace
def heap_sieve():
    yield 2
    yield 3
    candidates = count(5,2)
    composites = [(9, 3)]  # a priority queue of composite/factor pairs, keyed by composite

    for candidate in candidates:
        prime_flag = True
        while composites[0][0] == candidate:  # loop because there may be duplicates
            prime_flag = False  # signal to the if statement below
            composite, prime = composites[0]
            heapreplace(composites, (composite + prime*2, prime))

        if prime_flag:
            yield candidate
            heappush(composites, (candidate**2, candidate))

我将这两个版本与一个“渴望”版本一起计时,这里没有复制,它会生成一个低于限制的所有素数列表:

In [44]: from itertools import islice

In [45]: %timeit list(islice(dict_sieve(), 100000))
    ...: %timeit list(islice(heap_sieve(), 100000))
    ...: %timeit eager_sieve(1299710)  # 1299709 is the 100,000th prime
    ...: 
1 loops, best of 3: 2.12 s per loop
1 loops, best of 3: 4.94 s per loop
1 loops, best of 3: 677 ms per loop

“渴望”版本的速度要快得多也就不足为奇了 - 它基本上是在内存使用,必须指定上限的不便和CPU时间之间进行权衡。但是,当论文声称它更有效时,我确实发现heapq版本慢得多,这令人惊讶。这是我的实施问题吗?或者就是说,正如我们所知,dicts超快(并且heapq相对较慢)?

1 个答案:

答案 0 :(得分:7)

实际上,应该期望基于字典的方法比基于堆队列的方法更快。堆插入和替换操作是O(log n),而字典插入和替换操作是O(1)。

事实上,我很惊讶地发现该报的作者声称不是这样。但实际情况并非如此。您假设Data.Map是作为哈希映射实现的,但实际上,它是size balanced binary tree。因此其性能特征与堆队列的性能特征非常相似。不同之处在于从堆队列中检索最小密钥是O(1),这会加速部分筛选代码 - 但哈希映射仍然更快。