如何在Python / Numpy中向量化一个简单的for循环

时间:2012-11-14 13:34:26

标签: python numpy scipy vectorization

我发现了几十个如何在Python / NumPy中对for循环进行矢量化的例子。不幸的是,我不知道如何使用矢量化形式减少简单for循环的计算时间。在这种情况下甚至可能吗?

time = np.zeros(185000)
lat1 = np.array(([48.78,47.45],[38.56,39.53],...)) # ~ 200000 rows
lat2 = np.array(([7.78,5.45],[7.56,5.53],...)) # same number of rows as time
for ii in np.arange(len(time)):
    pos = np.argwhere( (lat1[:,0]==lat2[ii,0]) and \
                       (lat1[:,1]==lat2[ii,1]) )
    if pos.size:
        pos = int(pos)
        time[ii] = dtime[pos]

2 个答案:

答案 0 :(得分:2)

这是一个解决方案。我不确定是否可以对其进行矢量化。如果您想使其“浮动比较错误”,则应修改is_lessis_greater。 整个算法只是一个二元搜索。

import numpy as np

#lexicographicaly compare two points - a and b

def is_less(a, b):
    i = 0
    while i<len(a):
        if a[i]<b[i]:
            return True
        else:
            if a[i]>b[i]:
                return False
        i+=1
    return False

def is_greater(a, b):
    i = 0
    while i<len(a):
        if a[i]>b[i]:
            return True
        else:
            if a[i]<b[i]:
                return False
        i+=1
    return False


def binary_search(a, x, lo=0, hi=None):
    if hi is None:
        hi = len(a)
    while lo < hi:
        mid = (lo+hi)//2
        midval = a[mid]
        if is_less(midval, x):
            lo = mid+1
        elif is_greater(midval, x):
            hi = mid
        else:
            return mid
    return -1

def lex_sort(v): #sort by 1 and 2 column respectively
    #return v[np.lexsort((v[:,2],v[:,1]))]
    order = range(1, v.shape[1])
    return v[np.lexsort(tuple(v[:,i] for i in order[::-1]))]

def sort_and_index(arr):
    ind = np.indices((len(arr),)).reshape((len(arr), 1))
    arr = np.hstack([ind, arr]) # add an index column as first column
    arr = lex_sort(arr)
    arr_cut = arr[:,1:] # an array to do binary search in
    arr_ind = arr[:,:1] # shuffled indices
    return arr_ind, arr_cut


#lat1 = np.array(([1,2,3], [3,4,5], [5,6,7], [7,8,9])) # ~ 200000 rows
lat1 = np.arange(1,800001,1).reshape((200000,4))
#lat2 = np.array(([3,4,5], [5,6,7], [7,8,9], [1,2,3])) # same number of rows as time
lat2 = np.arange(101,800101,1).reshape((200000,4))

lat1_ind, lat1_cut = sort_and_index(lat1)

time_arr = np.zeros(200000)
import time
start = time.time()

for ii, elem in enumerate(lat2):
    pos = binary_search(lat1_cut, elem)
    if pos == -1:
        #Not found
        continue
    pos = lat1_ind[pos][0]
    #print "element in lat2 with index",ii,"has position",pos,"in lat1"
print time.time()-start

评论的印刷品是您具有lat1和lat2的相应索引的地方。在200000行上工作7秒。

答案 1 :(得分:2)

找到所有匹配项的最快方法可能是对两个数组进行排序并一起遍历它们,就像这个工作示例一样:

import numpy as np

def is_less(a, b):
    # this ugliness is needed because we want to compare lexicographically same as np.lexsort(), from the last column backward
    for i in range(len(a)-1, -1, -1):
        if a[i]<b[i]: return True
        elif a[i]>b[i]: return False
    return False

def is_equal(a, b):
    for i in range(len(a)):
        if a[i] != b[i]: return False
    return True

# lat1 = np.array(([48.78,47.45],[38.56,39.53]))
# lat2 = np.array(([7.78,5.45],[48.78,47.45],[7.56,5.53]))
lat1 = np.load('arr.npy')
lat2 = np.load('refarr.npy')

idx1 = np.lexsort( lat1.transpose() )
idx2 = np.lexsort( lat2.transpose() )
ii = 0
jj = 0
while ii < len(idx1) and jj < len(idx2):
    a = lat1[ idx1[ii] , : ]
    b = lat2[ idx2[jj] , : ]
    if is_equal( a, b ):
        # do stuff with match
        print "match found: lat1=%s lat2=%s %d and %d" % ( repr(a), repr(b), idx1[ii], idx2[jj] )
        ii += 1
        jj += 1
    elif is_less( a, b ):
        ii += 1
    else:
        jj += 1

这可能不是完全pythonic(也许有人可以想到使用生成器或itertools的更好的实现?)但很难想象任何依赖于一次搜索一个点的方法在速度上击败它。