我正在使用tsort
algorithm对库及其依赖项列表进行排序。如果依赖项不禁止它,我希望排序顺序保持不变。这个库列表不会发生这种情况:
依赖项在括号中指定。 this
和that
没有依赖关系。 other
取决于that
,而thing
取决于that
和this
。应用tsort
后,我希望将列表输出为:
订单没有变化。我得到的是:
在依赖性解析方面哪个是正确的,但无法保留原始顺序。
以下是我的代码的简化版本:
#!/usr/bin/perl -w
use v5.10;
sub sortem {
my %pairs; # all pairs ($l, $r)
my %npred; # number of predecessors
my %succ; # list of successors
for my $lib (@_) {
my $name = $lib->[0];
$pairs{$name} = {};
$npred{$name} += 0;
for my $dep (@{ $lib->[1] }) {
next if exists $pairs{$name}{$dep};
$pairs{$name}{$dep}++;
$npred{$dep}++;
push @{ $succ{$name} } => $dep;
}
}
# create a list of nodes without predecessors
my @list = grep {!$npred{$_}} keys %npred;
my @ret;
while (@list) {
my $lib = pop @list;
unshift @ret => $lib;
foreach my $child (@{$succ{$lib}}) {
push @list, $child unless --$npred{$child};
}
}
if ( my @cycles = grep { $npred{$_} } @_ ) {
die "Cycle detected between changes @cycles\n";
}
return @ret;
}
say for sortem(
['this', []],
['that', []],
['other', [qw(that)]],
['thing', [qw(that this)]],
);
如何修改它以尽可能保留原始排序?
对于那些不了解Perl但只想在工作中看到它的人,将这些行粘贴到一个文件中并将文件提供给tsort
以获得相同的非订单保留输出:
that thing
this thing
that other
that this
答案 0 :(得分:3)
让我们写下你的最后一个循环:
while (my @list = grep { !$npred{$_} } keys %npred) {
push(@ret, @list); # we will change this later
for my $lib (@list) {
delete $npred{$lib};
for my $child ( @{ $succ{$ib} } ) {
$npred{$child}--;
}
}
}
if (%npred) {
...we have a loop...
}
即,我们在keys %npred
上进行扫描,寻找零。当grep
没有返回任何元素时,我们就完成了或者有一个循环。
使拓扑排序稳定w.r.t。一些初始排序,我们只需将push(@ret, @list)
更改为:
push(@ret, sort {...} @list);
其中{...}
是指定初始排序的比较函数。
使用完整的工作示例进行更新:
use strict;
use warnings;
use Data::Dump qw/pp dd/;
my %deps = (
# node => [ others pointing to node ]
this => [],
that => [],
other => [qw/that/],
thing => [qw/that this other/],
yowza => [qw/that/],
);
# How to interpret %deps as a DAG:
#
# that ---> other ---+
# | V
# +------------> thing
# | ^
# +---> yowza |
# |
# this --------------+
#
# There are two choices for the first node in the topological sort: "this" and "that".
# Once "that' has been chosen, "yowza" and "other" become available.
# Either "yowza" or "thing" will be the last node in any topological sort.
sub tsort {
my ($deps, $order) = @_;
# $deps is the DAG
# $order is the preferred order of the nodes if there is a choice
# Initialize counts and reverse links.
my %ord;
my %count;
my %rdep;
my $nnodes = scalar(keys %$deps);
for (keys %$deps) {
$count{$_} = 0;
$rdep{$_} = [];
$ord{$_} = $nnodes;
}
for my $n (keys %$deps) {
$count{$n}++ for (@{ $deps->{$n} });
push(@{$rdep{$_}}, $n) for (@{ $deps->{$n} });
}
for (my $i = 0; $i <= $#$order; $i++) {
$ord{ $order->[$i] } = $i;
}
my @tsort;
# pp(%$deps);
# pp(%rdep);
while (1) {
# print "counts: ", pp(%count), "\n";
my @list = grep { $count{$_} == 0 } (keys %count);
last unless @list;
my @ord = sort { $ord{$a} <=> $ord{$b} } @list;
push(@tsort, @ord);
for my $n (@list) {
delete $count{$n};
$count{$_}-- for (@{ $rdep{$n} });
}
}
return @tsort;
}
sub main {
my @t1 = tsort(\%deps, [qw/this that other thing yowza/]);
print "t1: ", pp(@t1), "\n";
my @t2 = tsort(\%deps, [qw/this that yowza other thing/]);
print "t2: ", pp(@t2), "\n";
my @t3 = tsort(\%deps, [qw/that this yowza other thing/]);
print "t3: ", pp(@t3), "\n";
}
main();
输出结果为:
t1: ("this", "that", "other", "yowza", "thing")
t2: ("this", "that", "yowza", "other", "thing")
t3: ("that", "this", "yowza", "other", "thing")