我正在使用OpenCV进行面部和眼部检测。首先,我在OpenCV / Samples / c / facedetect.cpp中测试了示例程序。我给了两个图像作为这个facedetect.exe的输入 - 一个是完整的,另一个是同一个人的裁剪面。现在,facedetect.cpp可以在完整图像下正常工作,而它甚至不会将裁剪后的图像作为输入进行检测。
尽管裁剪后的图像仅包含使用OpenCV人脸检测器裁剪的脸部,但在某些不良情况下,我只能获得嘴巴或嘴唇或仅部分脸部。所以我的要求是检查图像中是否存在双眼。
下面是两个样本图片,一个是完整图片,我得到了正确的输出:
下面是我需要使用facedetect.cpp检测眼睛的图像:
所以我的问题是如何检测裁剪图像中的眼睛?
以下是facedetect.cpp示例的代码
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
static void help()
{
cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
"This classifier can recognize many ~rigid objects, it's most known use is for faces.\n"
"Usage:\n"
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n"
" [filename|camera_index]\n\n"
"see facedetect.cmd for one call:\n"
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3 \n"
"Hit any key to quit.\n"
"Using OpenCV version " << CV_VERSION << "\n" << endl;
}
void detectAndDraw( Mat& img,
CascadeClassifier& cascade, CascadeClassifier& nestedCascade,
double scale);
String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
String nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
int main( int argc, const char** argv )
{
CvCapture* capture = 0;
Mat frame, frameCopy, image;
const String scaleOpt = "--scale=";
size_t scaleOptLen = scaleOpt.length();
const String cascadeOpt = "--cascade=";
size_t cascadeOptLen = cascadeOpt.length();
const String nestedCascadeOpt = "--nested-cascade";
size_t nestedCascadeOptLen = nestedCascadeOpt.length();
String inputName;
help();
CascadeClassifier cascade, nestedCascade;
double scale = 1;
for( int i = 1; i < argc; i++ )
{
cout << "Processing " << i << " " << argv[i] << endl;
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
{
cascadeName.assign( argv[i] + cascadeOptLen );
cout << " from which we have cascadeName= " << cascadeName << endl;
}
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 )
{
if( argv[i][nestedCascadeOpt.length()] == '=' )
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
if( !nestedCascade.load( nestedCascadeName ) )
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
}
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
{
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
scale = 1;
cout << " from which we read scale = " << scale << endl;
}
else if( argv[i][0] == '-' )
{
cerr << "WARNING: Unknown option %s" << argv[i] << endl;
}
else
inputName.assign( argv[i] );
}
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load classifier cascade" << endl;
cerr << "Usage: facedetect [--cascade=<cascade_path>]\n"
" [--nested-cascade[=nested_cascade_path]]\n"
" [--scale[=<image scale>\n"
" [filename|camera_index]\n" << endl ;
return -1;
}
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
{
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
}
else if( inputName.size() )
{
image = imread( inputName, 1 );
if( image.empty() )
{
capture = cvCaptureFromAVI( inputName.c_str() );
if(!capture) cout << "Capture from AVI didn't work" << endl;
}
}
else
{
image = imread( "lena.jpg", 1 );
if(image.empty()) cout << "Couldn't read lena.jpg" << endl;
}
cvNamedWindow( "result", 1 );
if( capture )
{
cout << "In capture ..." << endl;
for(;;)
{
IplImage* iplImg = cvQueryFrame( capture );
frame = iplImg;
if( frame.empty() )
break;
if( iplImg->origin == IPL_ORIGIN_TL )
frame.copyTo( frameCopy );
else
flip( frame, frameCopy, 0 );
detectAndDraw( frameCopy, cascade, nestedCascade, scale );
if( waitKey( 10 ) >= 0 )
goto _cleanup_;
}
waitKey(0);
_cleanup_:
cvReleaseCapture( &capture );
}
else
{
cout << "In image read" << endl;
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale );
waitKey(0);
}
else if( !inputName.empty() )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( inputName.c_str(), "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf), c;
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
image = imread( buf, 1 );
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale );
c = waitKey(0);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
else
{
cerr << "Aw snap, couldn't read image " << buf << endl;
}
}
fclose(f);
}
}
}
cvDestroyWindow("result");
return 0;
}
void detectAndDraw( Mat& img,
CascadeClassifier& cascade, CascadeClassifier& nestedCascade,
double scale)
{
int i = 0;
double t = 0;
vector<Rect> faces;
const static Scalar colors[] = { CV_RGB(0,0,255),
CV_RGB(0,128,255),
CV_RGB(0,255,255),
CV_RGB(0,255,0),
CV_RGB(255,128,0),
CV_RGB(255,255,0),
CV_RGB(255,0,0),
CV_RGB(255,0,255)} ;
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
cvtColor( img, gray, CV_BGR2GRAY );
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
equalizeHist( smallImg, smallImg );
t = (double)cvGetTickCount();
cascade.detectMultiScale( smallImg, faces,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
|CV_HAAR_SCALE_IMAGE
,
Size(30, 30) );
t = (double)cvGetTickCount() - t;
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
{
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale);
center.y = cvRound((r->y + r->height*0.5)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
if( nestedCascade.empty() )
continue;
smallImgROI = smallImg(*r);
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
//|CV_HAAR_DO_CANNY_PRUNING
|CV_HAAR_SCALE_IMAGE
,
Size(30, 30) );
for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
{
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
radius = cvRound((nr->width + nr->height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
}
cv::imshow( "result", img );
}
答案 0 :(得分:2)
原始示例首先按cascade.detectMultiScale
检测面部,然后通过nestedCascade.detectMultiScale
在检测到的面部中找到眼睛。
如果您只需要检测眼睛,只需在整个图像上使用nestedCascade.detectMultiScale
。
答案 1 :(得分:2)
如果您有检测到的脸部(正面),则使用人体测量关系估计左眼和右眼区域的粗略位置,如下所示。
答案 2 :(得分:0)
更改级联分类器名称:
String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
将此更改为
String cascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
并传递图像的位置作为参数。