我一直在努力改进c ++,所以我一直在解决为编程竞赛而设计的问题。我几天前就开始了这个问题,并且无法解决这个问题。我需要一些帮助我的算法以及如何解决它。这是问题所在:ACM Image Compression problem
我的代码:我在下面解释一下。
#include "Compress.h"
using namespace std;
Compress::Compress(){
size = 0, threshold = 0, nRows=0, nCols=0;
// Enter in a file name
cout << "Welcome. Please type in the name of the file to read the numbers.\n";
cin >> readFileName;
inFile.open(readFileName.c_str());
if(!inFile.is_open()) {
cout << "Failed to open the file! Press Enter to exit..." << endl;
exit(1);
}
//Finding the array size and threshold
inFile >> size >> threshold;
nRows = size;
nCols = size;
topright = size;
bottomleft = size;
//Let's make the array
// creating the columns
compressArray = new int* [nCols];
// creating the rows
for (int r = 0; r < nRows; r++){
compressArray[r] = new int[nRows];
}
// FIll the array
for (int i = 0; i < nRows; i++){
for (int j = 0; j < nCols; j++){
inFile >> compressArray[i][j];
}
}
inFile.close();
// Show before editing.
print();
work(0, nRows, 0, nCols);
}
Compress::~Compress(){
for (int i = 0; i < nRows; i ++){
delete compressArray[i];
}
delete [] compressArray;
}
void Compress::work(int start_x, int end_x, int start_y, int end_y){
int nb_blacks = 0;
int nb_whites = 0;
int total_blocks = 0;
int majority = 0;
int percent = 0;
cout << start_x << end_x << start_y << end_y << "\n------\n";
for(int i = start_x; i < end_x; i++){
for(int j = start_y; j < end_y; j++){
if(compressArray[i][j] == 1){
nb_blacks++;
}
}
}
total_blocks = ((end_x - start_x) * (end_y - start_y));
nb_whites = total_blocks - nb_blacks;
// give the max back
majority = max(nb_blacks, nb_whites);
// find the percent of the highest amount of colored blocks.
percent = ((majority*100)/total_blocks);
cout << "\n----\nPercent: " << percent << " Threshold: " << threshold << endl;
// majority/total_blocks is determining the percent of the greater
// color in the box. We are comparing it to the threshold percent.
if (percent >= threshold){
for(int i = start_x; i < end_x; i++){
for(int j = start_y; j < end_y; j++){
if(nb_blacks > nb_whites) compressArray[i][j] = 1;
else compressArray[i][j] = 0;
}
}
}
else {
topright = topright/2;
bottomleft = bottomleft/2;
work(start_x, (end_x/2), (topright), end_y);
work(start_x, (end_x/2), start_y, (end_y/2));
work((bottomleft), end_x, start_y, (end_y/2));
work((bottomleft), end_x, (topright), end_y);
}
}
void Compress::print(){
for (int r = 0; r < nRows; r++){
for (int c = 0; c < nCols; c++){
cout << compressArray[r][c];
}
cout << endl;
}
}
所以,我的程序所做的是计算图像中黑色方块的数量(1)。然后将它与白色方块的数量(0)进行比较。根据图像中有多少个方块,以较大者为单位的百分比变为百分比。它将其与阈值进行比较。如果阈值小于百分比...整个图像变为多数颜色。
如果阈值较高......它会分成四个递归部分并放大。它将从右上角开始,然后是左上角,左下角和右下角。
我的程序使用4乘4平方,因为它正确分为四个部分。然而,随着8乘8平方......如果它需要被分成小于四个部分,一切都搞砸了。
我知道为什么会这样做。我用于放大递归函数的算法是错误的。如果正方形是8乘8 ...参数将类似于
0,8,8,8 =看整个广场
0,4,4,8 =右上角
角落使用4乘4 0,2,6,8 =看最右上角
2乘2的平方。
我只是不知道能得到我需要的数学函数。我不知道如何解决这个8乘8平方。我的代码甚至可以修复吗?或者我需要弄清楚另一种方法吗?如果是这样,怎么样?
谢谢
答案 0 :(得分:2)
修正了它!数学函数只是一种痛苦。
标头功能
#include<cstdlib>
#include<iostream>
#include<string>
#include<fstream>
using namespace std;
class Compress{
public:
Compress();
~Compress();
void input();
void work(int start_x, int end_x, int start_y, int end_y);
void print();
private:
int size;
int threshold;
int** compressArray;
int nRows, nCols;
string readFileName;
ifstream inFile;
};
CPP文件
#include "Compress.h"
using namespace std;
Compress::Compress(){
size = 0, threshold = 0, nRows=0, nCols=0;
// Enter in a file name
cout << "Welcome. Please type in the name of the file to read the numbers.\n";
cin >> readFileName;
// Open the file.
inFile.open(readFileName.c_str());
if(!inFile.is_open()) {
cout << "Failed to open the file! Press Enter to exit..." << endl;
exit(1);
}
//Finding the array size and threshold
inFile >> size;
nRows = size;
nCols = size;
// Enter a threshold.
cout << "Enter the desired threshold between 50-100: ";
cin >> threshold;
// Keep asking for the desired threshold until it is given.
while (threshold < 50 || threshold > 100){
cout << "\nIncorrect Threshold.\n";
cout << "Enter the desired threshold between 50-100: ";
cin >> threshold;
}
//Let's make the array
// creating the columns
compressArray = new int* [nCols];
// creating the rows
for (int r = 0; r < nRows; r++){
compressArray[r] = new int[nCols];
}
// FIll the array
for (int i = 0; i < nRows; i++){
for (int j = 0; j < nCols; j++){
inFile >> compressArray[i][j];
}
}
inFile.close();
// Show before editing.
print();
work(0, nRows, 0, nCols);
}
Compress::~Compress(){
for (int i = 0; i < nRows; i ++){
delete compressArray[i];
}
delete [] compressArray;
}
void Compress::work(int start_x, int end_x, int start_y, int end_y){
int Size = end_y - start_y; // Finding the midpoints.
int nb_blacks = 0;
int nb_whites = 0;
int total_blocks = 0;
int majority = 0;
int percent = 0;
// Testing everything.
// cout << "\nx1, y1: " << start_x << "," << start_y << " x2,y2: " << end_x << "," << end_y << endl;
// for (int r = start_x; r < end_x; r++){
// for (int c = start_y; c < end_y; c++){
// cout << compressArray[r][c];
// }
// cout << endl;
// }
// Initial case. If 1, break and start returning results
if (end_x <= start_x || end_y <= start_y){
return;
}
// Keep breaking it down until it reaches 1.
else {
// Count the Number of Black pieces
for(int i = start_x; i < end_x; i++){
for(int j = start_y; j < end_y; j++){
if(compressArray[i][j] == 1){
nb_blacks++;
}
}
}
// Find the total and number of white pieces.
total_blocks = ((end_x - start_x) * (end_y - start_y));
nb_whites = total_blocks - nb_blacks;
// give the max back
majority = max(nb_blacks, nb_whites);
// find the percent of the highest amount of colored blocks.
percent = ((majority*100)/total_blocks);
// cout << "Percent: " << percent << " Threshold: " << threshold << "\n-----\n";
// majority/total_blocks is determining the percent of the greater
// color in the box. We are comparing it to the threshold percent.
if (percent >= threshold){
for(int i = start_x; i < end_x; i++){
for(int j = start_y; j < end_y; j++){
if(nb_blacks > nb_whites) compressArray[i][j] = 1;
else compressArray[i][j] = 0;
}
}
}
// Keep breaking down until we reach the initial case.
else {
work((end_x - (Size/2)), (end_x), (start_y), (start_y + (Size/2)));
work(start_x, (start_x + (Size/2)), (start_y), (start_y + (Size/2)));
work((start_x), (start_x + (Size/2)), (end_y - (Size/2)), end_y);
work((end_x - (Size/2)), end_x, (end_y - (Size/2)), end_y);
//
// work((start_x), (mid_x), (mid_y), end_y);
// work(start_x, (mid_x ), (start_y), (mid_y));
// work((mid_x), end_x, start_y, (mid_y));
// work((mid_x), end_x, (mid_y), end_y);
}
}
}
void Compress::print(){
// Print the function
cout << "\nImage: " << threshold << "%\n";
for (int r = 0; r < nRows; r++){
for (int c = 0; c < nCols; c++){
cout << compressArray[r][c];
}
cout << endl;
}
}
答案 1 :(得分:0)
首先,您的阅读程序存在一些问题:
第二个数组创建循环错误,应使用nCols
作为循环的限制而不是nRows
:
// creating the rows
for (int r = 0; r < nCols; r++){
// Remember you're creating the "row"s for every column
compressArray[r] = new int[nRows];
}
根据问题说明,输入格式在位图像素之间不包含空格,因此您必须读取一行数据,然后遍历该行以提取单个字符:
// FIll the array
for (int i = 0; i < nRows; i++){
// You should #include <string> for this to work
string line;
inFile >> line;
for (int j = 0; j < nCols; j++)
compressArray[i][j] = line[j] - '0';
}
阅读完成后,您可以对work
例程添加一些改进:
你正在寻找的公式不是火箭科学,看看下面的图像:
只需像这样对位图进行分区,并为每个扇区对work
进行相应的调用(这里没有看到top/bottom
- right/left
变量的使用情况)
您的算法是递归算法,但没有初始大小写,因此您的算法无限期执行,您应该在任何递归调用之前检查start
和end
之间的差异是否为0。
还有另外一个警告,但你应该在继续
之前先解决这些问题 IMO,你解决这个问题的想法很好,只需要一点点抛光希望这有帮助!
PS: 将OOP基础知识(如课程)应用于一般软件开发是一个非常好的(如果不是最好的)实践,但对于编程竞赛考虑时间因素并且开发的解决方案的软件复杂性也不错,但考虑到在许多情况下它可能会导致您浪费时间并增加一些不必要的复杂性