将pandas数据帧转换为NumPy数组

时间:2012-11-02 00:57:33

标签: python arrays pandas numpy dataframe

我很想知道如何将pandas数据帧转换为NumPy数组。

数据帧:

import numpy as np
import pandas as pd

index = [1, 2, 3, 4, 5, 6, 7]
a = [np.nan, np.nan, np.nan, 0.1, 0.1, 0.1, 0.1]
b = [0.2, np.nan, 0.2, 0.2, 0.2, np.nan, np.nan]
c = [np.nan, 0.5, 0.5, np.nan, 0.5, 0.5, np.nan]
df = pd.DataFrame({'A': a, 'B': b, 'C': c}, index=index)
df = df.rename_axis('ID')

给出

label   A    B    C
ID                                 
1   NaN  0.2  NaN
2   NaN  NaN  0.5
3   NaN  0.2  0.5
4   0.1  0.2  NaN
5   0.1  0.2  0.5
6   0.1  NaN  0.5
7   0.1  NaN  NaN

我想将其转换为NumPy数组,如下所示:

array([[ nan,  0.2,  nan],
       [ nan,  nan,  0.5],
       [ nan,  0.2,  0.5],
       [ 0.1,  0.2,  nan],
       [ 0.1,  0.2,  0.5],
       [ 0.1,  nan,  0.5],
       [ 0.1,  nan,  nan]])

我该怎么做?


作为奖励,是否可以像这样保留dtypes?

array([[ 1, nan,  0.2,  nan],
       [ 2, nan,  nan,  0.5],
       [ 3, nan,  0.2,  0.5],
       [ 4, 0.1,  0.2,  nan],
       [ 5, 0.1,  0.2,  0.5],
       [ 6, 0.1,  nan,  0.5],
       [ 7, 0.1,  nan,  nan]],
     dtype=[('ID', '<i4'), ('A', '<f8'), ('B', '<f8'), ('B', '<f8')])

或类似。

有关如何完成此任务的任何建议?

16 个答案:

答案 0 :(得分:279)

要将pandas数据帧(df)转换为numpy ndarray,请使用以下代码:

df.values

array([[nan, 0.2, nan],
       [nan, nan, 0.5],
       [nan, 0.2, 0.5],
       [0.1, 0.2, nan],
       [0.1, 0.2, 0.5],
       [0.1, nan, 0.5],
       [0.1, nan, nan]])

答案 1 :(得分:121)

注意 :不推荐使用此回答中使用的.as_matrix()方法。 Pandas 0.23.4警告:

  

将来的版本中将删除方法.as_matrix。改为使用.values。


熊猫有内置的东西......

numpy_matrix = df.as_matrix()

给出

array([[nan, 0.2, nan],
       [nan, nan, 0.5],
       [nan, 0.2, 0.5],
       [0.1, 0.2, nan],
       [0.1, 0.2, 0.5],
       [0.1, nan, 0.5],
       [0.1, nan, nan]])

答案 2 :(得分:62)

我只想链​​接DataFrame.reset_index()DataFrame.values函数来获取数据帧的Numpy表示,包括索引:

In [8]: df
Out[8]: 
          A         B         C
0 -0.982726  0.150726  0.691625
1  0.617297 -0.471879  0.505547
2  0.417123 -1.356803 -1.013499
3 -0.166363 -0.957758  1.178659
4 -0.164103  0.074516 -0.674325
5 -0.340169 -0.293698  1.231791
6 -1.062825  0.556273  1.508058
7  0.959610  0.247539  0.091333

[8 rows x 3 columns]

In [9]: df.reset_index().values
Out[9]:
array([[ 0.        , -0.98272574,  0.150726  ,  0.69162512],
       [ 1.        ,  0.61729734, -0.47187926,  0.50554728],
       [ 2.        ,  0.4171228 , -1.35680324, -1.01349922],
       [ 3.        , -0.16636303, -0.95775849,  1.17865945],
       [ 4.        , -0.16410334,  0.0745164 , -0.67432474],
       [ 5.        , -0.34016865, -0.29369841,  1.23179064],
       [ 6.        , -1.06282542,  0.55627285,  1.50805754],
       [ 7.        ,  0.95961001,  0.24753911,  0.09133339]])

要获取dtypes,我们需要使用view将此ndarray转换为结构化数组:

In [10]: df.reset_index().values.ravel().view(dtype=[('index', int), ('A', float), ('B', float), ('C', float)])
Out[10]:
array([( 0, -0.98272574,  0.150726  ,  0.69162512),
       ( 1,  0.61729734, -0.47187926,  0.50554728),
       ( 2,  0.4171228 , -1.35680324, -1.01349922),
       ( 3, -0.16636303, -0.95775849,  1.17865945),
       ( 4, -0.16410334,  0.0745164 , -0.67432474),
       ( 5, -0.34016865, -0.29369841,  1.23179064),
       ( 6, -1.06282542,  0.55627285,  1.50805754),
       ( 7,  0.95961001,  0.24753911,  0.09133339),
       dtype=[('index', '<i8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])

答案 3 :(得分:49)

弃用valuesas_matrix()

从v0.24.0开始,我们介绍了两个全新的,首选方法,可从熊猫对象中获取NumPy数组:

  1. to_numpy() ,它是在IndexSeries,DataFrame对象上定义的,并且
  2. array ,仅在IndexSeries对象上定义。

如果您访问.values的v0.24文档,则会看到一个红色的大警告:

  

警告:我们建议改用DataFrame.to_numpy()

有关更多信息,请参见this section of the v0.24.0 release notesthis answer


实现更好的一致性:to_numpy()

本着整个API更好的一致性的精神,引入了一种新方法to_numpy,用于从DataFrames中提取底层的NumPy数组。

# Setup.
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['a', 'b', 'c'])
df

   A  B
a  1  4
b  2  5
c  3  6

df.to_numpy()
array([[1, 4],
       [2, 5],
       [3, 6]])

如上所述,还在IndexSeries对象上定义了此方法(请参见here)。

df.index.to_numpy()
# array(['a', 'b', 'c'], dtype=object)

df['A'].to_numpy()
#  array([1, 2, 3])

默认情况下,将返回视图,因此所做的任何修改都会影响原始视图。

v = df.to_numpy()
v[0, 0] = -1

df
   A  B
a -1  4
b  2  5
c  3  6

如果您需要副本,请使用to_numpy(copy=True);

v = df.to_numpy(copy=True)
v[0, 0] = -123

df
   A  B
a  1  4
b  2  5
c  3  6

如果您需要保留dtypes ...
如另一个答案所示,DataFrame.to_records是执行此操作的好方法。

df.to_records()
# rec.array([('a', -1, 4), ('b',  2, 5), ('c',  3, 6)],
#           dtype=[('index', 'O'), ('A', '<i8'), ('B', '<i8')])

很遗憾,to_numpy无法做到这一点。但是,您也可以使用np.rec.fromrecords

v = df.reset_index()
np.rec.fromrecords(v, names=v.columns.tolist())
# rec.array([('a', -1, 4), ('b',  2, 5), ('c',  3, 6)],
#          dtype=[('index', '<U1'), ('A', '<i8'), ('B', '<i8')])

在性能方面,它几乎是相同的(实际上,使用rec.fromrecords会快一点)。

df2 = pd.concat([df] * 10000)

%timeit df2.to_records()
%%timeit
v = df2.reset_index()
np.rec.fromrecords(v, names=v.columns.tolist())

11.1 ms ± 557 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
9.67 ms ± 126 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

添加新方法的理由

由于在两个GitHub问题GH19954GH23623下的讨论结果,添加了

to_numpy()(除了array)。

具体来说,文档中提到了基本原理:

  

[...]与.values并不清楚返回的值是否为   实际数组,对其进行某种转换,或熊猫自定义之一   数组(如Categorical)。例如,使用PeriodIndex.values   每次都会生成一个新的ndarray周期对象。 [...]

to_numpy旨在改善API的一致性,这是朝着正确方向迈出的重要一步。 .values在当前版本中不会被弃用,但是我希望这种情况可能会在将来的某个时候发生,因此我敦促用户尽快向较新的API迁移。


对其他解决方案的评论

如前所述,

DataFrame.values的行为不一致。

DataFrame.get_values()只是DataFrame.values的包装,因此上述所有内容均适用。

DataFrame.as_matrix()现在已弃用,请不要使用!

答案 4 :(得分:30)

您可以使用to_records方法,但如果它们不是您想要的,那么必须使用dtypes。在我的例子中,从字符串复制了DF,索引类型是字符串(在pandas中用object dtype表示):

In [102]: df
Out[102]: 
label    A    B    C
ID                  
1      NaN  0.2  NaN
2      NaN  NaN  0.5
3      NaN  0.2  0.5
4      0.1  0.2  NaN
5      0.1  0.2  0.5
6      0.1  NaN  0.5
7      0.1  NaN  NaN

In [103]: df.index.dtype
Out[103]: dtype('object')
In [104]: df.to_records()
Out[104]: 
rec.array([(1, nan, 0.2, nan), (2, nan, nan, 0.5), (3, nan, 0.2, 0.5),
       (4, 0.1, 0.2, nan), (5, 0.1, 0.2, 0.5), (6, 0.1, nan, 0.5),
       (7, 0.1, nan, nan)], 
      dtype=[('index', '|O8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
In [106]: df.to_records().dtype
Out[106]: dtype([('index', '|O8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])

转换recarray dtype对我来说不起作用,但是人们可以在Pandas中做到这一点:

In [109]: df.index = df.index.astype('i8')
In [111]: df.to_records().view([('ID', '<i8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])
Out[111]:
rec.array([(1, nan, 0.2, nan), (2, nan, nan, 0.5), (3, nan, 0.2, 0.5),
       (4, 0.1, 0.2, nan), (5, 0.1, 0.2, 0.5), (6, 0.1, nan, 0.5),
       (7, 0.1, nan, nan)], 
      dtype=[('ID', '<i8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])

请注意,Pandas没有在导出的记录数组中正确设置索引的名称(到ID)(一个错误?),所以我们从类型转换中获益也是为了纠正它。

目前Pandas只有8个字节的整数,i8和浮点数f8(见issue)。

答案 5 :(得分:22)

似乎df.to_records()对您有用。您正在寻找was requestedto_records的确切功能作为替代方案。

我在本地使用您的示例尝试了这个,并且该调用产生了与您正在寻找的输出非常相似的内容:

rec.array([(1, nan, 0.2, nan), (2, nan, nan, 0.5), (3, nan, 0.2, 0.5),
       (4, 0.1, 0.2, nan), (5, 0.1, 0.2, 0.5), (6, 0.1, nan, 0.5),
       (7, 0.1, nan, nan)],
      dtype=[(u'ID', '<i8'), (u'A', '<f8'), (u'B', '<f8'), (u'C', '<f8')])

请注意,这是recarray而不是array。您可以通过将其构造函数调用为np.array(df.to_records())来将结果移动到常规numpy数组中。

答案 6 :(得分:8)

这是我从pandas DataFrame制作结构数组的方法。

创建数据框

import pandas as pd
import numpy as np
import six

NaN = float('nan')
ID = [1, 2, 3, 4, 5, 6, 7]
A = [NaN, NaN, NaN, 0.1, 0.1, 0.1, 0.1]
B = [0.2, NaN, 0.2, 0.2, 0.2, NaN, NaN]
C = [NaN, 0.5, 0.5, NaN, 0.5, 0.5, NaN]
columns = {'A':A, 'B':B, 'C':C}
df = pd.DataFrame(columns, index=ID)
df.index.name = 'ID'
print(df)

      A    B    C
ID               
1   NaN  0.2  NaN
2   NaN  NaN  0.5
3   NaN  0.2  0.5
4   0.1  0.2  NaN
5   0.1  0.2  0.5
6   0.1  NaN  0.5
7   0.1  NaN  NaN

定义函数以从pandas DataFrame创建一个numpy结构数组(不是记录数组)。

def df_to_sarray(df):
    """
    Convert a pandas DataFrame object to a numpy structured array.
    This is functionally equivalent to but more efficient than
    np.array(df.to_array())

    :param df: the data frame to convert
    :return: a numpy structured array representation of df
    """

    v = df.values
    cols = df.columns

    if six.PY2:  # python 2 needs .encode() but 3 does not
        types = [(cols[i].encode(), df[k].dtype.type) for (i, k) in enumerate(cols)]
    else:
        types = [(cols[i], df[k].dtype.type) for (i, k) in enumerate(cols)]
    dtype = np.dtype(types)
    z = np.zeros(v.shape[0], dtype)
    for (i, k) in enumerate(z.dtype.names):
        z[k] = v[:, i]
    return z

使用reset_index创建一个新数据框,其中包含索引作为其数据的一部分。将该数据帧转换为结构数组。

sa = df_to_sarray(df.reset_index())
sa

array([(1L, nan, 0.2, nan), (2L, nan, nan, 0.5), (3L, nan, 0.2, 0.5),
       (4L, 0.1, 0.2, nan), (5L, 0.1, 0.2, 0.5), (6L, 0.1, nan, 0.5),
       (7L, 0.1, nan, nan)], 
      dtype=[('ID', '<i8'), ('A', '<f8'), ('B', '<f8'), ('C', '<f8')])

编辑:更新了df_to_sarray以避免使用python 3调用.encode()错误。感谢Joseph Garvinhalcyon的评论和解决方案。

答案 7 :(得分:6)

将数据帧转换为Numpy-array表示的两种方法。

  • mah_np_array = df.as_matrix(columns=None)

  • mah_np_array = df.values

Doc:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.as_matrix.html

答案 8 :(得分:4)

示例DataFrame的更简单方法:

df

         gbm       nnet        reg
0  12.097439  12.047437  12.100953
1  12.109811  12.070209  12.095288
2  11.720734  11.622139  11.740523
3  11.824557  11.926414  11.926527
4  11.800868  11.727730  11.729737
5  12.490984  12.502440  12.530894

使用:

np.array(df.to_records().view(type=np.matrix))

获取:

array([[(0, 12.097439  , 12.047437, 12.10095324),
        (1, 12.10981081, 12.070209, 12.09528824),
        (2, 11.72073428, 11.622139, 11.74052253),
        (3, 11.82455653, 11.926414, 11.92652727),
        (4, 11.80086775, 11.72773 , 11.72973699),
        (5, 12.49098389, 12.50244 , 12.53089367)]],
dtype=(numpy.record, [('index', '<i8'), ('gbm', '<f8'), ('nnet', '<f4'),
       ('reg', '<f8')]))

答案 9 :(得分:3)

从dataframe导出到arcgis表时遇到了类似的问题,偶然发现了usgs(https://my.usgs.gov/confluence/display/cdi/pandas.DataFrame+to+ArcGIS+Table)的解决方案。 简而言之,您的问题也有类似的解决方案:

df

      A    B    C
ID               
1   NaN  0.2  NaN
2   NaN  NaN  0.5
3   NaN  0.2  0.5
4   0.1  0.2  NaN
5   0.1  0.2  0.5
6   0.1  NaN  0.5
7   0.1  NaN  NaN

np_data = np.array(np.rec.fromrecords(df.values))
np_names = df.dtypes.index.tolist()
np_data.dtype.names = tuple([name.encode('UTF8') for name in np_names])

np_data

array([( nan,  0.2,  nan), ( nan,  nan,  0.5), ( nan,  0.2,  0.5),
       ( 0.1,  0.2,  nan), ( 0.1,  0.2,  0.5), ( 0.1,  nan,  0.5),
       ( 0.1,  nan,  nan)], 
      dtype=(numpy.record, [('A', '<f8'), ('B', '<f8'), ('C', '<f8')]))

答案 10 :(得分:2)

继meteore的回答之后,我找到了代码

df.index = df.index.astype('i8')

对我不起作用。所以我把我的代码放在这里是为了方便其他人坚持这个问题。

city_cluster_df = pd.read_csv(text_filepath, encoding='utf-8')
# the field 'city_en' is a string, when converted to Numpy array, it will be an object
city_cluster_arr = city_cluster_df[['city_en','lat','lon','cluster','cluster_filtered']].to_records()
descr=city_cluster_arr.dtype.descr
# change the field 'city_en' to string type (the index for 'city_en' here is 1 because before the field is the row index of dataframe)
descr[1]=(descr[1][0], "S20")
newArr=city_cluster_arr.astype(np.dtype(descr))

答案 11 :(得分:1)

写入to_numpy而不是to_numpy()来保留dtypes。

答案 12 :(得分:1)

将数据帧转换为numpy数组的简单方法:

import pandas as pd
df = pd.DataFrame({"A": [1, 2], "B": [3, 4]})
df_to_array = df.to_numpy()
array([[1, 3],
   [2, 4]])

鼓励使用to_numpy来保持一致性。

参考: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html

答案 13 :(得分:0)

尝试一下:

a = numpy.asarray(df)

答案 14 :(得分:0)

我经历了以上答案。 “ as_matrix()”方法有效,但现在已过时。对我来说,有效的方法是“ .to_numpy()”。

这将返回一个多维数组。如果您要从excel工作表中读取数据,并且需要从任何索引访问数据,则我会更喜欢使用此方法。希望这会有所帮助:)

答案 15 :(得分:0)

尝试一下:

np.array(df) 

array([['ID', nan, nan, nan],
   ['1', nan, 0.2, nan],
   ['2', nan, nan, 0.5],
   ['3', nan, 0.2, 0.5],
   ['4', 0.1, 0.2, nan],
   ['5', 0.1, 0.2, 0.5],
   ['6', 0.1, nan, 0.5],
   ['7', 0.1, nan, nan]], dtype=object)

更多信息,请访问:[https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html] 适用于numpy 1.16.5和pandas 0.25.2。