我正在使用如下所示的数据框:
date<-c("2012-02-01", "2012-02-01", "2012-02-03", "2012-02-04", "2012-02-04", "2012-02-05", "2012-02-09", "2012-02-12", "2012-02-12")
var<-c("a","b","c","d","e","f","g","h","i")
df1<-data.frame(date,var)
我想创建第二个数据框,将每天观察的数量制成表格。在该数据帧中,未提及的日期将为零......导致类似这样的事情:
date<-c("2012-02-01","2012-02-02","2012-02-03","2012-02-04","2012-02-05","2012-02-06","2012-02-07","2012-02-08","2012-02-09","2012-02-10","2012-02-11","2012-02-12")
num<-c(2,0,1,2,1,0,0,0,1,0,0,2)
df2<-data.frame(date,num)
我已尝试使用聚合函数进行了许多操作,但无法弄清楚如何包含没有观察的日期(零)。
答案 0 :(得分:2)
这是一种使用data.table
library(data.table)
DF1 <- as.data.table(df1)
# coerce date to a date object
DF1[, date := as.IDate(as.character(date), format = '%Y-%m-%d')]
# setkey for joining
setkey(DF1, date)
# create a data.table that matches with a data.table containing
# a sequence from the minimum date to the maximum date
# nomatch = NA includes those non-matching.
# .N is the number of rows in the subset data.frame
# this is 0 when there are no matches
DF2 <- DF1[J(DF1[,seq(min(date), max(date), by = 1)]), .N, nomatch = NA]
DF2
date N
1: 2012-02-01 2
2: 2012-02-02 0
3: 2012-02-03 1
4: 2012-02-04 2
5: 2012-02-05 1
6: 2012-02-06 0
7: 2012-02-07 0
8: 2012-02-08 0
9: 2012-02-09 1
10: 2012-02-10 0
11: 2012-02-11 0
12: 2012-02-12 2
使用reshape2::dcast
如果您确保date
列的每一天都有您希望制表的级别
df1$date <- with(df1, factor(date, levels = as.character(seq(min(as.Date(as.character(date))), max(as.Date(as.character(date))), by = 1 ))))
df2 <- dcast(df1, date~., drop = FALSE)
答案 1 :(得分:0)
我最近处理过类似的事情。我会创建一个包含您要考虑的所有日期的数据框,并使用merge()
函数来执行您的建议。
df1$date <- as.Date(df1$date, format = "%Y-%m-%d")
newdates <- data.frame(date=seq(as.Date('2012-02-01'),as.Date('2012-02-12'),1))
df2 <- merge(df1, newdates, by = "date", all = TRUE)
all = TRUE
在这里至关重要,它引入了NA
,其中df1
和df2
不匹配,而不是删除这些实例。
然后使用plyr
包来获取计数:
library(plyr)
ddply(df2, "date", function(x) sum(!is.na(x$var)))
这会按df2
的唯一值将df2$date
拆分为多个组,然后查找df2$var
的值NA
的多少个值,然后返回该数字以及唯一值它所代表的df2$date
。
答案 2 :(得分:0)
将索引转换为Postxct格式,然后:
counts <- data.frame(table(as.Date(index(my_data_frame))))