如何使用opencl在内核中显示图像?

时间:2012-10-29 12:51:35

标签: opencl

我是opencl的新手。任务是:

  1. 加载预先存在的图片
  2. 使用opencl编写主机代码,将图像ptr发送到内核
  3. 计算内核中加载图像的hsl阈值
  4. 显示阈值或二进制图像
  5. 我使用opencv在程序中加载预先存在的2D图像。我使用open cl buffer对象来分配内存,并将图像指针发送到内核。在内核执行后,为了显示来自内核的计算图像,我需要clEnqueueReadBuffer。然后我使用opencv显示来自主机的图像。我附上了代码

    由于这需要更多时间在GPU和CPU上,我想切换到图像内存。

    但是我想知道图像的使用是否还需要clenqueueReadImage来将图像从内核复制到主机,还是以任何方式在内核中显示阈值图像?

    //My code using opencl buffers    
    IplImage *src = cvLoadImage("../Input/im2.png",CV_LOAD_IMAGE_COLOR );
    
    int a=src->height;
    int b=src->width;
    
    cl_context CreateContext()
    {
        cl_int errNum;
        cl_uint numPlatforms;
        cl_platform_id firstPlatformId;
        cl_context context = NULL;
        errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
        if (errNum != CL_SUCCESS || numPlatforms <= 0)
        {
            std::cerr << "Failed to find any OpenCL platforms." << std::endl;
            return NULL;
        }
    
        cl_context_properties contextProperties[] =
        {
            CL_CONTEXT_PLATFORM,
            (cl_context_properties)firstPlatformId,
            0
        };
        context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
                                          NULL, NULL, &errNum);
        if (errNum != CL_SUCCESS)
        {
            std::cout << "Could not create GPU context, trying CPU..." << std::endl;
            context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_CPU, NULL, NULL, &errNum);
            if (errNum != CL_SUCCESS)
            {
                std::cerr << "Failed to create an OpenCL GPU or CPU context." << std::endl;
                return NULL;
            }
        }
        return context;
    }
    
    
    cl_command_queue CreateCommandQueue(cl_context context, cl_device_id *device)
    {
        cl_int errNum;
        cl_device_id *devices;
        cl_command_queue commandQueue = NULL;
        size_t deviceBufferSize = -1;
        errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);
        if (errNum != CL_SUCCESS)
        {
            std::cerr << "Failed call to clGetContextInfo(...,GL_CONTEXT_DEVICES,...)";
            return NULL;
        }
    
        if (deviceBufferSize <= 0)
        {
            std::cerr << "No devices available.";
            return NULL;
        }
        devices = new cl_device_id[deviceBufferSize / sizeof(cl_device_id)];
        errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);
        if (errNum != CL_SUCCESS)
        {
            delete [] devices;
            std::cerr << "Failed to get device IDs";
            return NULL;
        }
    
        commandQueue = clCreateCommandQueue(context, devices[0],CL_QUEUE_PROFILING_ENABLE, &errNum );
    
        if (commandQueue == NULL)
        {
            delete [] devices;
            std::cerr << "Failed to create commandQueue for device 0";
            return NULL;
        }
    
        *device = devices[0];
        delete [] devices;
        return commandQueue;
    }
    
    cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)
    {
        cl_int errNum;
        cl_program program;
    
        std::ifstream kernelFile(fileName, std::ios::in);
        if (!kernelFile.is_open())
        {
            std::cerr << "Failed to open file for reading: " << fileName << std::endl;
            return NULL;
        }
    
        std::ostringstream oss;
        oss << kernelFile.rdbuf();
    
        std::string srcStdStr = oss.str();
        const char *srcStr = srcStdStr.c_str();
        program = clCreateProgramWithSource(context, 1,
                                            (const char**)&srcStr,
                                            NULL, NULL);
        if (program == NULL)
        {
            std::cerr << "Failed to create CL program from source." << std::endl;
            return NULL;
        }
        errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
    
        if (errNum != CL_SUCCESS)
        {
            char buildLog[16384];
            clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
                                  sizeof(buildLog), buildLog, NULL);
            std::cerr << "Error in kernel: " << std::endl;
            std::cerr << buildLog;
            clReleaseProgram(program);
            return NULL;
        }
        return program;
    }
    
    bool CreateMemObjects(cl_context context, cl_mem memObjects[2], unsigned char *src_ptr)
    {
        memObjects[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(unsigned char) *(a*b*3) , src_ptr , NULL);
        memObjects[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(unsigned char) *(a*b) , NULL, NULL);
    
       if (memObjects[0] == NULL || memObjects[1] == NULL)
        {
            std::cerr << "Error creating memory objects" << std::endl;
            return false;
        }
        return true;
    }
    
    void Cleanup(cl_context context, cl_command_queue commandQueue, cl_program program, cl_kernel kernel, cl_mem memObjects[2])
    {
        for (int i = 0; i < 2; i++)
        {
            if (memObjects[i] != 0)
                clReleaseMemObject(memObjects[i]);
        }
        if (commandQueue != 0)
            clReleaseCommandQueue(commandQueue);
    
        if (kernel != 0)
            clReleaseKernel(kernel);
    
        if (program != 0)
            clReleaseProgram(program);
    
        if (context != 0)
            clReleaseContext(context);
    }
    
    
    int main()
    {
        cl_context context = 0;
        cl_command_queue commandQueue = 0;
        cl_program program = 0;
        cl_device_id device = 0;
        cl_kernel kernel = 0;
        cl_mem memObjects[2] = { 0,0 };
        cl_int errNum;
        cl_event myEvent;
    
        cl_ulong start_time,end_time;
        double kernelExecTimeNs;
    
        IplImage *thres_img1 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
    
        unsigned char *tur_image1,*src_ptr;
        tur_image1 = (unsigned char*) malloc((a*b) * sizeof(unsigned char));
        src_ptr = (unsigned char*) malloc ((a*b*3) * sizeof(unsigned char));
    
        context = CreateContext();
        if (context == NULL)
        {
            std::cerr << "Failed to create OpenCL context." <<std::endl;
            return 1;
        }
    
        commandQueue = CreateCommandQueue(context, &device);
        if (commandQueue == NULL)
        {
            Cleanup(context, commandQueue, program, kernel, memObjects);
            return 1;
        }
    
        program = CreateProgram(context, device, "hsl_threshold.cl");
        if (program == NULL)
        {
            Cleanup(context, commandQueue, program, kernel, memObjects);
            return 1;
        }
    
        kernel = clCreateKernel(program, "HSL_threshold", NULL);
        if (kernel == NULL)
        {
            std::cerr << "Failed to create kernel" << std::endl;
            Cleanup(context, commandQueue, program, kernel, memObjects);
            return 1;
        }
    
        printf("height:%d\n",a);//image height
        printf("width:%d\n",b);//image width
    
        cvShowImage("color image",src);
        cvWaitKey(0);
    
        memcpy(src_ptr,src->imageData,(a*b*3));
    
        if (!CreateMemObjects(context, memObjects, src_ptr))
        {
            Cleanup(context, commandQueue, program, kernel, memObjects);
            return 1;
        }
    
            errNum  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &memObjects[0]);
        errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &memObjects[1]);
    
        if (errNum != CL_SUCCESS)
        {
            std::cerr << "Error setting kernel arguments" << std::endl;
            Cleanup(context, commandQueue, program, kernel, memObjects);
            return 1;
        }
    
        cout<<"Kernel arguments set successfully";
        size_t globalWorkSize[1]={a*b};
        size_t localWorkSize[1]={512};
    
        errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, &myEvent);
    
        clWaitForEvents(1,&myEvent);
    
        if (errNum != CL_SUCCESS)
        {
            std::cerr << "Error queuing kernel for execution." << std::endl;
            Cleanup(context, commandQueue, program, kernel, memObjects);
            return 1;
        }
        clFinish(commandQueue);
    
    
        clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_START, sizeof(start_time), &start_time, NULL);
        clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_END, sizeof(end_time), &end_time, NULL);
    
        kernelExecTimeNs = end_time-start_time;
    
        printf("\nExecution time in milliseconds = %0.3f ms\n",( kernelExecTimeNs / 1000000.0) );
        cout<<"\n Kernel timings \n"<<kernelExecTimeNs<<"seconds";
    
        errNum = clEnqueueReadBuffer(commandQueue, memObjects[1], CL_TRUE,
                                     0, (a*b) * sizeof(unsigned char), tur_image1,
                                     0, NULL, NULL);
    
        if (errNum != CL_SUCCESS)
        {
            std::cerr << "Error reading result buffer." << std::endl;
            Cleanup(context, commandQueue, program, kernel, memObjects);
            return 1;
        }
    
        memcpy(thres_img1->imageData,tur_image1,sizeof(unsigned char)*(a*b));
    
        cvShowImage( "hsl_thresh",thres_img1);
        cvSaveImage( "../Output/hsl_threshold.png",thres_img1);
        cvWaitKey(0);
    
        std::cout<<std::endl;
        std::cout<<"Image displayed Successfully"<<std::endl;
    
        Cleanup(context,commandQueue,program,kernel,memObjects);
        printf("\n Free opencl resources");
        std::cin.get();
        return 0;
    
    }
    

1 个答案:

答案 0 :(得分:7)

有很多方法可以直接处理OpenCL通过OpenGL计算的数据。您的OCL实施必须支持扩展cl_khr_gl_sharing 此模式称为CL / GL-Interop模式。

如果首先创建一个OpenGL实例并使用指向GL实例的指针初始化OpenCL,则每个实现都可以访问彼此的数据。

(所有片段都是使用CL-C ++从代码中获取的 - Bindings,我想这对于一般的理解是可以的)

cl_context_properties properties[] = 
  // Take this line to create an OCL context in GL-CL-interop-mode. 
  // OpenGL must already be initialised. 
  // For interop init see: http://www.khronos.org/registry/cl/extensions/khr/cl_khr_gl_sharing.txt
  // USING: CL_GL_CONTEXT_KHR: Rendering Context [Use your OGL-HGLRC variable or do wglGetCurrentContext(); ]
  //   AND: CL_WGL_HDC_KHR: Device Context [Use your OGL-HDC variable or do wglGetCurrentDC(); ]
  { 
    CL_CONTEXT_PLATFORM, (cl_context_properties)(_platforms->at(0))(), 
    CL_GL_CONTEXT_KHR, (cl_context_properties)myGL->hRC, 
    CL_WGL_HDC_KHR, (cl_context_properties)myGL->hDC, 0
  };

现在您可以基于OGL纹理创建OCL图像

//The following data can be accessed both from OCL and OGL
cl::Image2D imageFromGL = new cl::Image2DGL(*_context, CL_MEM_READ_WRITE,  GL_TEXTURE_2D, 0, myGL->textures[0]);

在OCL中使用内存之前,你必须要求OGL发布它

//Ask OGL to release memory. All OGL actions must be finished before doing so!
_queue->enqueueAcquireGLObjects(&imageFromGL, NULL, &evt);

现在,做你想做的事,然后把它还给OGL:

//Hand memory back to OGL. All OCL actions must be finished before doing so!
_queue->enqueueReleaseGLObjects(&imageFromGL, NULL, &evt);

最后,您可以使用OpenGL代码在屏幕上显示数据。