我是opencl的新手。任务是:
我使用opencv在程序中加载预先存在的2D图像。我使用open cl buffer对象来分配内存,并将图像指针发送到内核。在内核执行后,为了显示来自内核的计算图像,我需要clEnqueueReadBuffer。然后我使用opencv显示来自主机的图像。我附上了代码
由于这需要更多时间在GPU和CPU上,我想切换到图像内存。
但是我想知道图像的使用是否还需要clenqueueReadImage来将图像从内核复制到主机,还是以任何方式在内核中显示阈值图像?
//My code using opencl buffers
IplImage *src = cvLoadImage("../Input/im2.png",CV_LOAD_IMAGE_COLOR );
int a=src->height;
int b=src->width;
cl_context CreateContext()
{
cl_int errNum;
cl_uint numPlatforms;
cl_platform_id firstPlatformId;
cl_context context = NULL;
errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
if (errNum != CL_SUCCESS || numPlatforms <= 0)
{
std::cerr << "Failed to find any OpenCL platforms." << std::endl;
return NULL;
}
cl_context_properties contextProperties[] =
{
CL_CONTEXT_PLATFORM,
(cl_context_properties)firstPlatformId,
0
};
context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
NULL, NULL, &errNum);
if (errNum != CL_SUCCESS)
{
std::cout << "Could not create GPU context, trying CPU..." << std::endl;
context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_CPU, NULL, NULL, &errNum);
if (errNum != CL_SUCCESS)
{
std::cerr << "Failed to create an OpenCL GPU or CPU context." << std::endl;
return NULL;
}
}
return context;
}
cl_command_queue CreateCommandQueue(cl_context context, cl_device_id *device)
{
cl_int errNum;
cl_device_id *devices;
cl_command_queue commandQueue = NULL;
size_t deviceBufferSize = -1;
errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);
if (errNum != CL_SUCCESS)
{
std::cerr << "Failed call to clGetContextInfo(...,GL_CONTEXT_DEVICES,...)";
return NULL;
}
if (deviceBufferSize <= 0)
{
std::cerr << "No devices available.";
return NULL;
}
devices = new cl_device_id[deviceBufferSize / sizeof(cl_device_id)];
errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);
if (errNum != CL_SUCCESS)
{
delete [] devices;
std::cerr << "Failed to get device IDs";
return NULL;
}
commandQueue = clCreateCommandQueue(context, devices[0],CL_QUEUE_PROFILING_ENABLE, &errNum );
if (commandQueue == NULL)
{
delete [] devices;
std::cerr << "Failed to create commandQueue for device 0";
return NULL;
}
*device = devices[0];
delete [] devices;
return commandQueue;
}
cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)
{
cl_int errNum;
cl_program program;
std::ifstream kernelFile(fileName, std::ios::in);
if (!kernelFile.is_open())
{
std::cerr << "Failed to open file for reading: " << fileName << std::endl;
return NULL;
}
std::ostringstream oss;
oss << kernelFile.rdbuf();
std::string srcStdStr = oss.str();
const char *srcStr = srcStdStr.c_str();
program = clCreateProgramWithSource(context, 1,
(const char**)&srcStr,
NULL, NULL);
if (program == NULL)
{
std::cerr << "Failed to create CL program from source." << std::endl;
return NULL;
}
errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (errNum != CL_SUCCESS)
{
char buildLog[16384];
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
sizeof(buildLog), buildLog, NULL);
std::cerr << "Error in kernel: " << std::endl;
std::cerr << buildLog;
clReleaseProgram(program);
return NULL;
}
return program;
}
bool CreateMemObjects(cl_context context, cl_mem memObjects[2], unsigned char *src_ptr)
{
memObjects[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(unsigned char) *(a*b*3) , src_ptr , NULL);
memObjects[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(unsigned char) *(a*b) , NULL, NULL);
if (memObjects[0] == NULL || memObjects[1] == NULL)
{
std::cerr << "Error creating memory objects" << std::endl;
return false;
}
return true;
}
void Cleanup(cl_context context, cl_command_queue commandQueue, cl_program program, cl_kernel kernel, cl_mem memObjects[2])
{
for (int i = 0; i < 2; i++)
{
if (memObjects[i] != 0)
clReleaseMemObject(memObjects[i]);
}
if (commandQueue != 0)
clReleaseCommandQueue(commandQueue);
if (kernel != 0)
clReleaseKernel(kernel);
if (program != 0)
clReleaseProgram(program);
if (context != 0)
clReleaseContext(context);
}
int main()
{
cl_context context = 0;
cl_command_queue commandQueue = 0;
cl_program program = 0;
cl_device_id device = 0;
cl_kernel kernel = 0;
cl_mem memObjects[2] = { 0,0 };
cl_int errNum;
cl_event myEvent;
cl_ulong start_time,end_time;
double kernelExecTimeNs;
IplImage *thres_img1 = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
unsigned char *tur_image1,*src_ptr;
tur_image1 = (unsigned char*) malloc((a*b) * sizeof(unsigned char));
src_ptr = (unsigned char*) malloc ((a*b*3) * sizeof(unsigned char));
context = CreateContext();
if (context == NULL)
{
std::cerr << "Failed to create OpenCL context." <<std::endl;
return 1;
}
commandQueue = CreateCommandQueue(context, &device);
if (commandQueue == NULL)
{
Cleanup(context, commandQueue, program, kernel, memObjects);
return 1;
}
program = CreateProgram(context, device, "hsl_threshold.cl");
if (program == NULL)
{
Cleanup(context, commandQueue, program, kernel, memObjects);
return 1;
}
kernel = clCreateKernel(program, "HSL_threshold", NULL);
if (kernel == NULL)
{
std::cerr << "Failed to create kernel" << std::endl;
Cleanup(context, commandQueue, program, kernel, memObjects);
return 1;
}
printf("height:%d\n",a);//image height
printf("width:%d\n",b);//image width
cvShowImage("color image",src);
cvWaitKey(0);
memcpy(src_ptr,src->imageData,(a*b*3));
if (!CreateMemObjects(context, memObjects, src_ptr))
{
Cleanup(context, commandQueue, program, kernel, memObjects);
return 1;
}
errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &memObjects[0]);
errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &memObjects[1]);
if (errNum != CL_SUCCESS)
{
std::cerr << "Error setting kernel arguments" << std::endl;
Cleanup(context, commandQueue, program, kernel, memObjects);
return 1;
}
cout<<"Kernel arguments set successfully";
size_t globalWorkSize[1]={a*b};
size_t localWorkSize[1]={512};
errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, &myEvent);
clWaitForEvents(1,&myEvent);
if (errNum != CL_SUCCESS)
{
std::cerr << "Error queuing kernel for execution." << std::endl;
Cleanup(context, commandQueue, program, kernel, memObjects);
return 1;
}
clFinish(commandQueue);
clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_START, sizeof(start_time), &start_time, NULL);
clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_END, sizeof(end_time), &end_time, NULL);
kernelExecTimeNs = end_time-start_time;
printf("\nExecution time in milliseconds = %0.3f ms\n",( kernelExecTimeNs / 1000000.0) );
cout<<"\n Kernel timings \n"<<kernelExecTimeNs<<"seconds";
errNum = clEnqueueReadBuffer(commandQueue, memObjects[1], CL_TRUE,
0, (a*b) * sizeof(unsigned char), tur_image1,
0, NULL, NULL);
if (errNum != CL_SUCCESS)
{
std::cerr << "Error reading result buffer." << std::endl;
Cleanup(context, commandQueue, program, kernel, memObjects);
return 1;
}
memcpy(thres_img1->imageData,tur_image1,sizeof(unsigned char)*(a*b));
cvShowImage( "hsl_thresh",thres_img1);
cvSaveImage( "../Output/hsl_threshold.png",thres_img1);
cvWaitKey(0);
std::cout<<std::endl;
std::cout<<"Image displayed Successfully"<<std::endl;
Cleanup(context,commandQueue,program,kernel,memObjects);
printf("\n Free opencl resources");
std::cin.get();
return 0;
}
答案 0 :(得分:7)
有很多方法可以直接处理OpenCL通过OpenGL计算的数据。您的OCL实施必须支持扩展cl_khr_gl_sharing
此模式称为CL / GL-Interop模式。
如果首先创建一个OpenGL实例并使用指向GL实例的指针初始化OpenCL,则每个实现都可以访问彼此的数据。
(所有片段都是使用CL-C ++从代码中获取的 - Bindings,我想这对于一般的理解是可以的)
cl_context_properties properties[] =
// Take this line to create an OCL context in GL-CL-interop-mode.
// OpenGL must already be initialised.
// For interop init see: http://www.khronos.org/registry/cl/extensions/khr/cl_khr_gl_sharing.txt
// USING: CL_GL_CONTEXT_KHR: Rendering Context [Use your OGL-HGLRC variable or do wglGetCurrentContext(); ]
// AND: CL_WGL_HDC_KHR: Device Context [Use your OGL-HDC variable or do wglGetCurrentDC(); ]
{
CL_CONTEXT_PLATFORM, (cl_context_properties)(_platforms->at(0))(),
CL_GL_CONTEXT_KHR, (cl_context_properties)myGL->hRC,
CL_WGL_HDC_KHR, (cl_context_properties)myGL->hDC, 0
};
现在您可以基于OGL纹理创建OCL图像
//The following data can be accessed both from OCL and OGL
cl::Image2D imageFromGL = new cl::Image2DGL(*_context, CL_MEM_READ_WRITE, GL_TEXTURE_2D, 0, myGL->textures[0]);
在OCL中使用内存之前,你必须要求OGL发布它
//Ask OGL to release memory. All OGL actions must be finished before doing so!
_queue->enqueueAcquireGLObjects(&imageFromGL, NULL, &evt);
现在,做你想做的事,然后把它还给OGL:
//Hand memory back to OGL. All OCL actions must be finished before doing so!
_queue->enqueueReleaseGLObjects(&imageFromGL, NULL, &evt);
最后,您可以使用OpenGL代码在屏幕上显示数据。