// Find a maximum element in the array.
findMax(A)
findMaxHelper(A, 0, A.length)
findMaxHelper(A, left, right)
if (left == right - 1)
return A[left]
else
max1 = findMaxHelper(A, left, (right + left) / 2)
max2 = findMaxHelper(A, (right + left) / 2, right)
if (max1 > max2)
return max1
else
return max2
我很难理解这段伪代码中发生了什么。
有人可以帮助解释每行发生的事情。在我回答问题之前,我需要先理解这段代码。
我知道函数findMax调用helper函数findMaxHelper,然后findMaxHelper使用递归。除此之外,我真的不明白。
答案 0 :(得分:30)
您正在使用Divide and Conquer算法查找数组中的最大元素。首先,您将数组划分为单个元素(除法),然后比较元素(征服)。您正在使用递归调用findMaxHelper
来分割数组。
分而治之的总体思路如图所示:
示例:强>
此处max
与您的findMaxHelper
函数相同,有两个参数,即left
和right
。
检查this示例,以便更深入地了解该概念。
答案 1 :(得分:2)
捷豹已经很好地理解了这个概念,保罗提供了正确而详细的解释。 除此之外,我想分享一个简单的C代码,让您了解代码是如何获得的 执行。这是使用Jaguar的相同输入的代码:
#include<stdio.h>
int findMaxHelper(int A[], int left, int right){
int max1,max2;
int static tabcount;
int loop;
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
tabcount++;
printf(" Entering: findMaxHelper(A, left = %d ,right = %d)\n\n",left,right);
if (left == right - 1){
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
printf("\b\b\b\b\b\b\bLeaving: findMaxHelper(A, left = %d ,right = %d)| returning %d\n\n",left,right , A[left]);
tabcount--;
return A[left];
}
else
{
max1 = findMaxHelper(A, left, (right + left) / 2);
max2 = findMaxHelper(A, (right + left) / 2, right);
if (max1 > max2){
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
printf("\b\b\b\b\b\b\bLeaving: findMaxHelper(A, left = %d ,right = %d) | returning max1=%d\n\n",left,right,max1);
tabcount--;
return max1;
}
else {
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
printf("\b\b\b\b\b\b\bLeaving: findMaxHelper(A, left = %d ,right = %d)| returning max2=%d\n\n",left,right,max2);
tabcount--;
return max2;
}
}
}
int main (){
int A[] = { 34,3,47,91,32,0 };
int Ans =findMaxHelper(A,0,7);
printf( "And The Answer Is = %d \n",Ans);
}
你可以复制粘贴你的linux机器上的代码...也许在每次printf后放入sleep(5) 并看看递归是如何工作的!... 希望这可以帮助... 我还将在这里分享我系统的输出:
Entering: findMaxHelper(A, left = 0 ,right = 7)
Entering: findMaxHelper(A, left = 0 ,right = 3)
Entering: findMaxHelper(A, left = 0 ,right = 1)
Leaving: findMaxHelper(A, left = 0 ,right = 1)| returning 34
Entering: findMaxHelper(A, left = 1 ,right = 3)
Entering: findMaxHelper(A, left = 1 ,right = 2)
Leaving: findMaxHelper(A, left = 1 ,right = 2)| returning 3
Entering: findMaxHelper(A, left = 2 ,right = 3)
Leaving: findMaxHelper(A, left = 2 ,right = 3)| returning 47
Leaving: findMaxHelper(A, left = 1 ,right = 3)| returning max2=47
Leaving: findMaxHelper(A, left = 0 ,right = 3)| returning max2=47
Entering: findMaxHelper(A, left = 3 ,right = 7)
Entering: findMaxHelper(A, left = 3 ,right = 5)
Entering: findMaxHelper(A, left = 3 ,right = 4)
Leaving: findMaxHelper(A, left = 3 ,right = 4)| returning 91
Entering: findMaxHelper(A, left = 4 ,right = 5)
Leaving: findMaxHelper(A, left = 4 ,right = 5)| returning 32
Leaving: findMaxHelper(A, left = 3 ,right = 5) | returning max1=91
Entering: findMaxHelper(A, left = 5 ,right = 7)
Entering: findMaxHelper(A, left = 5 ,right = 6)
Leaving: findMaxHelper(A, left = 5 ,right = 6)| returning 0
Entering: findMaxHelper(A, left = 6 ,right = 7)
Leaving: findMaxHelper(A, left = 6 ,right = 7)| returning 0
Leaving: findMaxHelper(A, left = 5 ,right = 7)| returning max2=0
Leaving: findMaxHelper(A, left = 3 ,right = 7) | returning max1=91
Leaving: findMaxHelper(A, left = 0 ,right = 7)| returning max2=91
And The Answer Is = 91
答案 2 :(得分:0)
findMaxHelper
每次将数组分成两半,并在左边找到最大值,右边:
例如,你有数组A = [1, 3, 5, 8]
,请致电findMax(A)
- &gt; findMaxHelper(A, 0, A.length)
:
max1 | max2
1 3 | 5 8
max1|max2 | max1|max2
1 |3 | 5 |8
答案 3 :(得分:-1)
#include<stdio.h>
#include<stdlib.h>
int high,*a,i=0,n,h;
int max(int *);
int main()
{
printf("Size of array: ");
scanf("%d",&n);
a=(int *)malloc(n*sizeof(int)); //dynamic allocation
for(i=0;i<n;i++)
{
scanf("%d",(a+i));
}
i=0;
high=*a;
h=max(a);
printf("The highest element is %d\n",h);
}
int max(int *a)
{
if(i<n)
{
if(*(a+i)>high)
{high=*(a+i);}
i++;
max(a); //recursive call
}
return high;
}
答案 4 :(得分:-2)
基本上不建议在递归中找到max in array,因为它不是必需的。 划分和征服算法(递归)的时间成本更高。 但即使你想使用它,你也可以使用我的下面的算法。基本上,它在第一个位置带来了阵列中最大的元素,并且具有几乎线性的运行时间。(这个算法只是一个递归错觉!):
int getRecursiveMax(int arr[], int size){
if(size==1){
return arr[0];
}else{
if(arr[0]< arr[size-1]){
arr[0]=arr[size-1];
}
return(getRecursiveMax(arr,size-1));
}
}