我有df
:
sales net_pft
STK_ID RPT_Date
600141 20101231 46.780 1.833
20110331 13.725 0.384
20110630 32.733 1.132
20110930 50.386 1.923
20111231 65.685 2.325
20120331 21.088 0.656
20120630 46.952 1.591
600809 20101231 30.166 4.945
20110331 18.724 5.061
20110630 28.948 6.586
20110930 35.637 7.075
20111231 44.882 7.805
20120331 22.140 4.925
20120630 38.157 7.868
我希望在groupby STK_ID
之后对所有列进行滚动平均,由伪代码表示的规则如下:
if RPT_Date[4:8] == '0331':
all_column = rolling_mean(all_column,2)
if RPT_Date[4:8] == '0630':
all_column = rolling_mean(all_column,3)
if RPT_Date[4:8] == '0930':
all_column = rolling_mean(all_column,4)
if RPT_Date[4:8] == '1231':
all_column = rolling_mean(all_column,5)
if is_the_first_row():
keep_original_values()
all_column
此处代表“sales
”,'net_pft'
。最终结果如下:
sales net_pft
STK_ID RPT_Date
600141 20101231 46.780 1.833 # same as original value
20110331 30.253 1.109 # average of row1&row2
20110630 31.079 1.116 # average of row1&row2&row3
......
600809 20101231 30.166 4.945 # same as original value
20110331 24.445 5.003 # average of row1&row2
.....
如何用简洁的Pandas表达式写作?
答案 0 :(得分:2)
我想你想要这个?
In [29]: df.groupby(level='STK_ID').apply(lambda x: pd.expanding_mean(x))
Out[29]:
sales net_pft
STK_ID RPT_Date
600141 20101231 46.780000 1.833000
20110331 30.252500 1.108500
20110630 31.079333 1.116333
20110930 35.906000 1.318000
20111231 41.861800 1.519400
20120331 38.399500 1.375500
20120630 39.621286 1.406286
600809 20101231 30.166000 4.945000
20110331 24.445000 5.003000
20110630 25.946000 5.530667
20110930 28.368750 5.916750
20111231 31.671400 6.294400
20120331 30.082833 6.066167
20120630 31.236286 6.323571