多进程Python / Numpy代码,用于更快地处理数据

时间:2012-10-25 09:06:30

标签: python numpy parallel-processing multiprocessing

我正在阅读数百个HDF文件并分别处理每个HDF的数据。但是,这需要花费大量时间,因为它一次只能处理一个HDF文件。我只是偶然发现了http://docs.python.org/library/multiprocessing.html,现在我想知道如何使用多处理加快速度。

到目前为止,我提出了这个问题:

import numpy as np
from multiprocessing import Pool

def myhdf(date):
    ii      = dates.index(date)
    year    = date[0:4]
    month   = date[4:6]
    day     = date[6:8]
    rootdir = 'data/mydata/'
    filename = 'no2track'+year+month+day
    records = read_my_hdf(rootdir,filename)
    if records.size:
        results[ii] = np.mean(records)

dates = ['20080105','20080106','20080107','20080108','20080109']
results = np.zeros(len(dates))

pool = Pool(len(dates))
pool.map(myhdf,dates)

然而,这显然是不正确的。你能跟我思考我想做什么吗?我需要改变什么?

2 个答案:

答案 0 :(得分:4)

尝试joblib以获得更友好的multiprocessing包装:

from joblib import Parallel, delayed

def myhdf(date):
    # do work
    return np.mean(records)

results = Parallel(n_jobs=-1)(delayed(myhdf)(d) for d in dates)

答案 1 :(得分:2)

Pool classes map函数就像标准的python库map函数一样,你可以保证按照你输入它们的顺序得到你的结果。知道这个,唯一的另一个技巧是你需要以一致的方式返回结果,然后过滤它们。

import numpy as np
from multiprocessing import Pool

def myhdf(date):
    year    = date[0:4]
    month   = date[4:6]
    day     = date[6:8]
    rootdir = 'data/mydata/'
    filename = 'no2track'+year+month+day
    records = read_my_hdf(rootdir,filename)
    if records.size:
        return np.mean(records)

dates = ['20080105','20080106','20080107','20080108','20080109']

pool = Pool(len(dates))
results = pool.map(myhdf,dates)
results = [ result for result in results if result ]
results = np.array(results)

如果您确实希望获得结果,可以使用imap_unordered