我需要从特定的面/顶点列表计算最小值,最大值和平均值。我尝试使用Numpy来优化这种计算,但没有成功。
这是我的测试用例:
#!/usr/bin/python
# -*- coding: iso-8859-15 -*-
'''
Module Started 22 févr. 2013
@note: test case comparaison numpy vs python
@author: Python4D/damien
'''
import numpy as np
import time
def Fnumpy(vertices):
np_vertices=np.array(vertices)
_x=np_vertices[:,:,0]
_y=np_vertices[:,:,1]
_z=np_vertices[:,:,2]
_min=[np.min(_x),np.min(_y),np.min(_z)]
_max=[np.max(_x),np.max(_y),np.max(_z)]
_mean=[np.mean(_x),np.mean(_y),np.mean(_z)]
return _mean,_max,_min
def Fpython(vertices):
list_x=[item[0] for sublist in vertices for item in sublist]
list_y=[item[1] for sublist in vertices for item in sublist]
list_z=[item[2] for sublist in vertices for item in sublist]
taille=len(list_x)
_mean=[sum(list_x)/taille,sum(list_y)/taille,sum(list_z)/taille]
_max=[max(list_x),max(list_y),max(list_z)]
_min=[min(list_x),min(list_y),min(list_z)]
return _mean,_max,_min
if __name__=="__main__":
vertices=[[[1.1,2.2,3.3,4.4]]*4]*1000000
_t=time.clock()
print ">>NUMPY >>{} for {}s.".format(Fnumpy(vertices),time.clock()-_t)
_t=time.clock()
print ">>PYTHON>>{} for {}s.".format(Fpython(vertices),time.clock()-_t)
结果是:
numpy的:
([1.1000000000452519,2.2000000000905038,3.3000000001880174],[1.1000000000000001,2.2000000000000002,3.2999999999999998],[1.1000000000000001,2.2000000000000002,3.2999999999999998]) 27.327068618s。
的Python:
([1.100000000045252,2.200000000090504,3.3000000001880174],[1.1,2.2,3.3],[1.1,2.2,3.3]) 1.81366938593s。
Pure Python比Numpy快15倍!
答案 0 :(得分:10)
Fnumpy
较慢的原因是它包含Fpython
未执行的额外步骤:在内存中创建numpy数组。如果您将行np_verticies=np.array(verticies)
移到Fnumpy
以外的时间段,那么您的搜索结果就会大不相同:
>>NUMPY >>([1.1000000000452519, 2.2000000000905038, 3.3000000001880174], [1.1000000000000001, 2.2000000000000002, 3.2999999999999998], [1.1000000000000001, 2.2000000000000002, 3.2999999999999998]) for 0.500802s.
>>PYTHON>>([1.100000000045252, 2.200000000090504, 3.3000000001880174], [1.1, 2.2, 3.3], [1.1, 2.2, 3.3]) for 2.182239s.
您还可以通过在创建数据类型时提供numpy来显着加快分配步骤。如果你告诉Numpy你有一个浮点数组,那么即使你在定时循环中留下np.array()
调用它也会击败纯python版本。
如果我将np_vertices=np.array(vertices)
更改为np_vertices=np.array(vertices, dtype=np.float_)
而将其保留在Fnumpy
,则Fnumpy
版本将击败Fpython
即使它必须做更多的工作:
>>NUMPY >>([1.1000000000452519, 2.2000000000905038, 3.3000000001880174], [1.1000000000000001, 2.2000000000000002, 3.2999999999999998], [1.1000000000000001, 2.2000000000000002, 3.2999999999999998]) for 1.586066s.
>>PYTHON>>([1.100000000045252, 2.200000000090504, 3.3000000001880174], [1.1, 2.2, 3.3], [1.1, 2.2, 3.3]) for 2.196787s.
答案 1 :(得分:2)
正如其他人已经指出的那样,您的问题是从列表转换为数组。通过使用适当的numpy
函数,您将击败Python。我修改了程序的主要部分:
if __name__=="__main__":
_t = time.clock()
vertices_np = np.resize(np.array([ 1.1, 2.2, 3.3, 4.4 ], dtype=np.float64),
(1000000, 4, 4))
print "Creating numpy vertices: {}".format(time.clock() - _t)
_t = time.clock()
vertices=[[[1.1,2.2,3.3,4.4]]*4]*1000000
print "Creating python vertices: {}".format(time.clock() - _t)
_t=time.clock()
print ">>NUMPY >>{} for {}s.".format(Fnumpy(vertices_np),time.clock()-_t)
_t=time.clock()
print ">>PYTHON>>{} for {}s.".format(Fpython(vertices),time.clock()-_t)
使用修改后的主要部分运行代码会在我的机器上生成:
Creating numpy vertices: 0.6
Creating python vertices: 0.01
>>NUMPY >>([1.1000000000452519, 2.2000000000905038, 3.3000000001880174],
[1.1000000000000001, 2.2000000000000002, 3.2999999999999998], [1.1000000000000001,
2.2000000000000002, 3.2999999999999998]) for 0.5s.
>>PYTHON>>([1.100000000045252, 2.200000000090504, 3.3000000001880174], [1.1, 2.2, 3.3],
[1.1, 2.2, 3.3]) for 1.91s.
尽管使用Numpy工具创建数组时,使用python的列表乘法运算符(0.6s对0.01s)创建嵌套列表,但是你得到的因子大约为ca. 4代表运行时相关部分。如果我更换行:
np_vertices=np.array(vertices)
带
np_vertices = np.asarray(vertices)
为避免复制大数组,numpy函数的运行时间甚至在我的机器上降至0.37s,比纯python版本快5倍以上。
在您的实际代码中,如果您事先知道顶点的数量,可以通过np.empty()
预先分配相应的数组,然后用适当的数据填充它,并将其传递给函数的numpy版本