在R中正确使用gsub /正则表达式?

时间:2012-10-22 10:44:38

标签: regex r list gsub

我有很长的字符串列表,例如这个机器可读的例子:

A <- list(c("Biology","Cell Biology","Art","Humanities, Multidisciplinary; Psychology, Experimental","Astronomy & Astrophysics; Physics, Particles & Fields","Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods","Geriatrics & Gerontology","Gerontology","Management","Operations Research & Management Science","Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic","Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Statistics & Probability"))  

所以它看起来像这样:

> A  
[[1]]  
 [1] "Biology"  
 [2] "Cell Biology"  
 [3] "Art"  
 [4] "Humanities, Multidisciplinary; Psychology, Experimental"  
 [5] "Astronomy & Astrophysics; Physics, Particles & Fields"  
 [6] "Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods"  
 [7] "Geriatrics & Gerontology"  
 [8] "Gerontology"  
 [9] "Management"  
[10] "Operations Research & Management Science"  
[11] "Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic"  
[12] "Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Statistics & Probability"  

我想编辑这些术语并消除重复项以获得此结果:

 [1] "Science"  
 [2] "Science"  
 [3] "Arts & Humanities"  
 [4] "Arts & Humanities; Social Sciences"  
 [5] "Science"  
 [6] "Social Sciences; Science"  
 [7] "Science"  
 [8] "Social Sciences"  
 [9] "Social Sciences"  
[10] "Science"  
[11] "Science"  
[12] "Social Sciences; Science"  

到目前为止,我只得到了这个:

stringedit <- function(A)  
{  
  A <-gsub("Biology", "Science", A)  
  A <-gsub("Cell Biology", "Science", A)  
  A <-gsub("Art", "Arts & Humanities", A)  
  A <-gsub("Humanities, Multidisciplinary", "Arts & Humanities", A)  
  A <-gsub("Psychology, Experimental", "Social Sciences", A)  
  A <-gsub("Astronomy & Astrophysics", "Science", A)  
  A <-gsub("Physics, Particles & Fields", "Science", A)  
  A <-gsub("Economics", "Social Sciences", A)  
  A <-gsub("Mathematics", "Science", A)  
  A <-gsub("Mathematics, Applied", "Science", A)  
  A <-gsub("Mathematics, Interdisciplinary Applications", "Science", A)  
  A <-gsub("Social Sciences, Mathematical Methods", "Social Sciences", A)  
  A <-gsub("Geriatrics & Gerontology", "Science", A)  
  A <-gsub("Gerontology", "Social Sciences", A)  
  A <-gsub("Management", "Social Sciences", A)  
  A <-gsub("Operations Research & Management Science", "Science", A)  
  A <-gsub("Computer Science, Artificial Intelligence", "Science", A)  
  A <-gsub("Computer Science, Information Systems", "Science", A)  
  A <-gsub("Engineering, Electrical & Electronic", "Science", A)  
  A <-gsub("Statistics & Probability", "Science", A)  
}  
B <- lapply(A, stringedit)  

但它无法正常工作:

> B  
[[1]]  
 [1] "Science"  
 [2] "Cell Science"  
 [3] "Arts & Humanities"  
 [4] "Arts & Humanities; Social Sciences"  
 [5] "Science; Science"  
 [6] "Social Sciences; Science, Interdisciplinary Applications; Social Sciences"  
 [7] "Science"  
 [8] "Social Sciences"  
 [9] "Social Sciences"  
[10] "Operations Research & Social Sciences Science"  
[11] "Computer Science, Arts & Humanitiesificial Intelligence; Science; Science"  
[12] "Social Sciences; Science, Interdisciplinary Applications; Social Sciences; Science"  

如何实现上述正确的输出?
非常感谢您提前考虑!

3 个答案:

答案 0 :(得分:5)

我发现最简单的方法是使用两列data.frame作为查找,其中一列用于课程名称,一列用于该类别。这是一个例子:

course.categories <- data.frame(
  Course = 
  c("Art", "Humanities, Multidisciplinary", "Biology", "Cell Biology", 
    "Astronomy & Astrophysics", "Physics, Particles & Fields", "Mathematics", 
    "Mathematics, Applied", "Mathematics, Interdisciplinary Applications", 
    "Geriatrics & Gerontology", "Operations Research & Management Science", 
    "Computer Science, Artificial Intelligence", 
    "Computer Science, Information Systems", 
    "Engineering, Electrical & Electronic", "Statistics & Probability", 
    "Psychology, Experimental", "Economics", 
    "Social Sciences, Mathematical Methods", 
    "Gerontology", "Management"),
  Category =
  c("Arts & Humanities", "Arts & Humanities", "Science", "Science", 
    "Science", "Science", "Science", "Science", "Science", "Science", 
    "Science", "Science", "Science", "Science", "Science", "Social Sciences", 
    "Social Sciences", "Social Sciences", "Social Sciences", "Social Sciences"))

然后,假设A为您问题中的列表:

sapply(strsplit(unlist(A), "; "), 
       function(x) 
         paste(unique(course.categories[match(x, course.categories[["Course"]]),
                                        "Category"]), 
               collapse = "; "))
#  [1] "Science"                            "Science"                           
#  [3] "Arts & Humanities"                  "Arts & Humanities; Social Sciences"
#  [5] "Science"                            "Social Sciences; Science"          
#  [7] "Science"                            "Social Sciences"                   
#  [9] "Social Sciences"                    "Science"                           
# [11] "Science"                            "Social Sciences; Science"

matchA中的值与course.categories数据集中的课程名称相匹配,并说明匹配发生在哪些行上;这用于提取课程所属的类别。然后,unique确保我们只有每个类别中的一个。 paste将事情重新组合在一起。

答案 1 :(得分:4)

让我先从一个例子开始。你有一个字符串“细胞生物学”。第一个替换A <-gsub("Biology", "Science", A)将其变成“细胞科学”。然后没有替代。

由于你不使用正则表达式,我宁愿使用一种哈希来做替​​换:

myhash <- c( "Science", "Science", "Arts & Humanities", "Arts & Humanities", "Social Sciences", 
  "Science", "Science", "Social Sciences", "Science", "Science", "Science", "Social Sciences", 
  "Science", "Social Sciences", "Social Sciences", "Science", "Science", "Science", "Science", 
  "Science" )

names( myhash ) <- c( "Biology", "Cell Biology", "Art", "Humanities, Multidisciplinary", 
  "Psychology, Experimental", "Astronomy & Astrophysics", "Physics, Particles & Fields", "Economics", 
  "Mathematics", "Mathematics, Applied", "Mathematics, Interdisciplinary Applications", 
  "Social Sciences, Mathematical Methods", "Geriatrics & Gerontology", "Gerontology", "Management",
   "Operations Research & Management Science", "Computer Science, Artificial Intelligence", 
  "Computer Science, Information Systems", "Engineering, Electrical & Electronic", 
  "Statistics & Probability" )

现在,给定“生物学”等字符串,您可以快速查找您的类别:

myhash[ "Biology" ]

我不确定你为什么要使用列表而不是字符串向量,因此我会简化你的情况:

A <- c("Biology","Cell Biology","Art",
  "Humanities, Multidisciplinary; Psychology, Experimental",
  "Astronomy & Astrophysics; Physics, Particles & Fields",
  "Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods",
  "Geriatrics & Gerontology","Gerontology","Management","Operations Research & Management Science",
  "Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic",
  "Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Statistics & Probability")

has查找不适用于复合字符串(包含“;”)。您可以使用strsplit拆分它们。然后,您可以使用unique来避免重复,并使用paste函数将其重新组合在一起。

stringedit <- function( x ) { 
  # first, split into subterms
  a.all <- unlist( strsplit( x, "; *" ) ) ; 
  paste( unique( myhash[ a.all ] ), collapse= "; " ) 
}

unlist( lapply( A, stringedit  ) )

根据需要,结果如下:

[1] "Science"                            "Science"                            "Arts & Humanities"                  "Arts & Humanities; Social Sciences"
[5] "Science"                            "Social Sciences; Science"           "Science"                            "Social Sciences"                   
[9] "Social Sciences"                    "Science"                            "Science"                            "Social Sciences; Science" 

当然,您可以多次拨打*apply

a.spl <- sapply( A, strsplit, "; *" )
a.spl <- sapply( a.spl, function( x ) myhash[ x ] )
unlist( sapply( a.spl, collapse, "; " )

这比以前的代码效率更高或更低。

是的,您可以使用正则表达式实现相同的功能,但首先,它会涉及拆分字符串,然后使用正则表达式^Biology$来确保它们匹配“生物学”而不是“细胞生物学”除非你想要像“。*生物学”这样的结构。最后,你无论如何都要摆脱重复,而且所有这一切,在我看来(i)不那么冗长(更容易出错)和(ii)不值得努力。

答案 2 :(得分:2)

如何使用switch

science.category <- function(science){
    switch(science,
           "Biology" =,
           "Cell Biology" =,
           "Astronomy & Astrophysics" =,
           "Physics, Particles & Fields" =,
           "Mathematics" =,
           "Mathematics, Applied" =,
           "Mathematics, Interdisciplinary Applications" =,
           "Geriatrics & Gerontology" =,
           "Operations Research & Management Science" =,
           "Computer Science, Artificial Intelligence" =,
           "Computer Science, Information Systems" =,
           "Engineering, Electrical & Electronic" =,
           "Statistics & Probability" = "Science",
           "Art" =,
           "Humanities, Multidisciplinary" = "Arts & Humanities",
           "Psychology, Experimental" =,
           "Economics" =,
           "Social Sciences, Mathematical Methods" =,
           "Gerontology" =,
           "Management" = "Social Sciences",
           NA
           )
}

a <- unlist(lapply(A, strsplit, split = " *; *"), recursive = FALSE)
a1 <- lapply(a, function(x) unique(sapply(x, science.category)))
sapply(a1, paste, collapse = "; ")

当然,只要你有适当的字符串作为switch参数,这将有效。一个不匹配,你将以NA结束。对于某些高级用法,您应该编写自己的包装器以使用grep - 函数族,甚至是agrep(小心处理)。