我想合并多个(超过2个)数据帧。它们都共享相同的值列:
In [431]: [x.head() for x in data]
Out[431]:
[ AvgStatisticData
DateTime
2012-10-14 14:00:00 39.335996
2012-10-14 15:00:00 40.210110
2012-10-14 16:00:00 48.282816
2012-10-14 17:00:00 40.593039
2012-10-14 18:00:00 40.952014,
AvgStatisticData
DateTime
2012-10-14 14:00:00 47.854712
2012-10-14 15:00:00 55.041512
2012-10-14 16:00:00 55.488026
2012-10-14 17:00:00 51.688483
2012-10-14 18:00:00 57.916672,
AvgStatisticData
DateTime
2012-10-14 14:00:00 54.171233
2012-10-14 15:00:00 48.718387
2012-10-14 16:00:00 59.978616
2012-10-14 17:00:00 50.984514
2012-10-14 18:00:00 54.924745,
AvgStatisticData
DateTime
2012-10-14 14:00:00 65.813114
2012-10-14 15:00:00 71.397868
2012-10-14 16:00:00 76.213973
2012-10-14 17:00:00 72.729002
2012-10-14 18:00:00 73.196415,
....etc
我读到连接可以处理多个数据帧,但我得到:
In [432]: data[0].join(data[1:])
...
Exception: Indexes have overlapping values: ['AvgStatisticData']
我已尝试传递rsuffix=["%i" % (i) for i in range(len(data))]
加入并仍然收到相同的错误。我可以通过以列名称不重叠的方式构建我的data
列表来解决此问题,但也许有更好的方法?
答案 0 :(得分:15)
In [65]: pd.concat(data, axis=1)
Out[65]:
AvgStatisticData AvgStatisticData AvgStatisticData AvgStatisticData
2012-10-14 14:00:00 39.335996 47.854712 54.171233 65.813114
2012-10-14 15:00:00 40.210110 55.041512 48.718387 71.397868
2012-10-14 16:00:00 48.282816 55.488026 59.978616 76.213973
2012-10-14 17:00:00 40.593039 51.688483 50.984514 72.729002
2012-10-14 18:00:00 40.952014 57.916672 54.924745 73.196415
答案 1 :(得分:4)
我会尝试使用pandas.merge
选项suffixes=
。
import pandas as pd
import datetime as dt
df_1 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
df_2 = pd.DataFrame({'x' : [dt.datetime(2012,10,21) + dt.timedelta(n) for n in range(10)], 'y' : range(10)})
df = pd.merge(df_1, df_2, on='x', suffixes=['_1', '_2'])
我很想知道专家是否有更多的算法方法来合并数据框列表。