我正在使用此代码将100个日期合并到各自的月份中:
cpkmonthly <- aggregate(mydf$AVG, na.rm=TRUE, list(month=months(as.Date(mydf$DATETIME))), mean)
这是R:
中的输出> cpkmonthly
month x
1 April 0.4583167
2 August 0.4416660
3 July 0.4436665
4 June 0.4435551
5 March 0.4654443
6 May 0.4523338
我正在寻找一种方法将certian月份合并到几个季度。
Jan-March = q1
April-June = q2
July-Sep = q3
Oct-Dec = q4
有办法做到这一点吗?
输出应该如下所示:
> cpkquarterly
quarter x
1 q1 0.4583167
2 q2 0.4416660
3 q3 0.4436665
4 q4 0.4435551
答案 0 :(得分:6)
zoo
包具有执行此操作的功能:
library(zoo)
as.yearqtr("2012-06", "%Y-%m")
# [1] "2012 Q2"
答案 1 :(得分:1)
目前尚不清楚你想要什么:
> require(data.table)
> cpkmonthly <- data.table(month=c("April", "August", "July","June","March","May"),
+ x=c(0.4583167,0.4416660,0.4436665,0.4435551,0.4654443,0.4523338)
+ )
>
> cpkmonthly
month x
1: April 0.4583167
2: August 0.4416660
3: July 0.4436665
4: June 0.4435551
5: March 0.4654443
6: May 0.4523338
>
> quart <- data.table(month=month.name,quarter=rep(1:4, each=3),key="month")
>
> ###if you just want each row assigned to a quarter:
> quart[cpkmonthly]
month quarter x
1: April 2 0.4583167
2: August 3 0.4416660
3: July 3 0.4436665
4: June 2 0.4435551
5: March 1 0.4654443
6: May 2 0.4523338
>
> ###if you want to aggregate in various ways:
>
> quart[cpkmonthly][,list(x.avg=mean(x),x.max=max(x),x.1=x[1]),by=quarter][order(quarter)]
quarter x.avg x.max x.1
1: 1 0.4654443 0.4654443 0.4654443
2: 2 0.4514019 0.4583167 0.4583167
3: 3 0.4426663 0.4436665 0.4416660
答案 2 :(得分:0)
我有类似的问题,但我的公司有一个日历,其中四分之一的开始&amp;在不规则的日期结束。以下是我在自己的数据中解决这个问题的方法。请注意,我的数据集包含&gt; 5MM行所以我使用的是data.table
而不是data.frame。
# My data is contained in the myDT data.table.
# Dates are contained in the date column.
require("data.table")
Q1FY14 <- myDT[ which(date >= "2013-02-02" & date <= "2013-05-03"), ]
Q2FY14 <- myDT[ which(date >= "2013-05-04" & date <= "2013-08-02"), ]
Q3FY14 <- myDT[ which(date >= "2013-08-03" & date <= "2013-11-01"), ]
Q4FY14 <- myDT[ which(date >= "2013-11-02" & date <= "2014-01-31"), ]
Q1FY15 <- myDT[ which(date >= "2014-02-01" & date <= "2014-05-02"), ]
# Create new vectors.
Q1.14 <- rep("Q1 FY14", nrow(Q1FY14))
Q2.14 <- rep("Q2 FY14", nrow(Q2FY14))
Q3.14 <- rep("Q3 FY14", nrow(Q3FY14))
Q4.14 <- rep("Q4 FY14", nrow(Q4FY14))
Q1.15 <- rep("Q1 FY15", nrow(Q1FY15))
# Add each of my new vectors to their associate data.table.
Q1FY14$quarter <- Q1.14
Q2FY14$quarter <- Q2.14
Q3FY14$quarter <- Q3.14
Q4FY14$quarter <- Q4.14
Q1FY15$quarter <- Q1.15
# Bring it all together.
newDT <- rbind(Q1FY14, Q2FY14)
newDT <- rbind(newDT, Q3FY14)
newDT <- rbind(newDT, Q4FY14)
newDT <- rbind(newDT, Q1FY15)
# Clean up data.
rm(Q1FY14, Q2FY14, Q3FY14, Q4FY14, Q1FY15, Q1.14, Q2.14, Q3.14, Q4.14, Q1.15)
为每行添加了正确的季度。我需要进行一些其他的小调整才能使其可用。
# Change the column order so that quarter appears next to date.
setcolorder(newDT, c("date", "quarter", ...))
# Change the quarter column to factors.
newDT$quarter <- factor(newDT$quarter)