我需要显示一个圆周。为了做到这一点,我想我可以计算x
y
这两个值的很多import sympy as sy
from sympy.abc import x,y
f = x**2 + y**2 - 1
a = x - 0.5
sy.solve([f,a],[x,y])
,所以我做了:
Traceback (most recent call last):
File "<input>", line 1, in <module>
File "/usr/lib/python2.7/dist-packages/sympy/solvers/solvers.py", line 484, in
solve
solution = _solve(f, *symbols, **flags)
File "/usr/lib/python2.7/dist-packages/sympy/solvers/solvers.py", line 749, in
_solve
result = solve_poly_system(polys)
File "/usr/lib/python2.7/dist-packages/sympy/solvers/polysys.py", line 40, in
solve_poly_system
return solve_biquadratic(f, g, opt)
File "/usr/lib/python2.7/dist-packages/sympy/solvers/polysys.py", line 48, in
solve_biquadratic
G = groebner([f, g])
File "/usr/lib/python2.7/dist-packages/sympy/polys/polytools.py", line 5308, i
n groebner
raise DomainError("can't compute a Groebner basis over %s" % domain)
DomainError: can't compute a Groebner basis over RR
这就是我得到的:
y
如何计算{{1}}的值?
答案 0 :(得分:1)
适合我;也许解决方案就像升级一样简单?
>>> import sympy
>>> sympy.__version__
'0.7.2'
>>> import sympy as sy
>>> from sympy.abc import x,y
>>> f = x**2 + y**2 - 1
>>> a = x - 0.5
>>> sy.solve([f,a],[x,y])
[(0.500000000000000, -0.866025403784439), (0.500000000000000, 0.866025403784439)]
[虽然如果我需要绘制一个圆圈或圆弧,我会使用r cos(theta), r sin(theta)
来代替,以便更容易按正确的顺序获得积分。]
答案 1 :(得分:0)
你也可以使用有理数来得到一个确切的答案(并避免这个错误)
In [22]: a = x - Rational(1,2)
In [23]: sy.solve([f,a],[x,y])
Out[23]:
⎡⎛ ___⎞ ⎛ ___⎞⎤
⎢⎜ -╲╱ 3 ⎟ ⎜ ╲╱ 3 ⎟⎥
⎢⎜1/2, ──────⎟, ⎜1/2, ─────⎟⎥
⎣⎝ 2 ⎠ ⎝ 2 ⎠⎦