使用与此类似的数据框:
set.seed(100)
df <- data.frame(cat = c(rep("aaa", 5), rep("bbb", 5), rep("ccc", 5)), val = runif(15))
df <- df[order(df$cat, df$val), ]
df
cat val
1 aaa 0.05638315
2 aaa 0.25767250
3 aaa 0.30776611
4 aaa 0.46854928
5 aaa 0.55232243
6 bbb 0.17026205
7 bbb 0.37032054
8 bbb 0.48377074
9 bbb 0.54655860
10 bbb 0.81240262
11 ccc 0.28035384
12 ccc 0.39848790
13 ccc 0.62499648
14 ccc 0.76255108
15 ccc 0.88216552
我正在尝试在每个组中添加一个带编号的列。这样做显然不是使用R的力量:
df$num <- 1
for (i in 2:(length(df[,1]))) {
if (df[i,"cat"]==df[(i-1),"cat"]) {
df[i,"num"]<-df[i-1,"num"]+1
}
}
df
cat val num
1 aaa 0.05638315 1
2 aaa 0.25767250 2
3 aaa 0.30776611 3
4 aaa 0.46854928 4
5 aaa 0.55232243 5
6 bbb 0.17026205 1
7 bbb 0.37032054 2
8 bbb 0.48377074 3
9 bbb 0.54655860 4
10 bbb 0.81240262 5
11 ccc 0.28035384 1
12 ccc 0.39848790 2
13 ccc 0.62499648 3
14 ccc 0.76255108 4
15 ccc 0.88216552 5
这样做的好方法是什么?
答案 0 :(得分:206)
使用ave
,ddply
,dplyr
或data.table
:
df$num <- ave(df$val, df$cat, FUN = seq_along)
或:
library(plyr)
ddply(df, .(cat), mutate, id = seq_along(val))
或:
library(dplyr)
df %>% group_by(cat) %>% mutate(id = row_number())
或(内存效率最高,因为它在DT
内通过引用分配):
library(data.table)
DT <- data.table(df)
DT[, id := seq_len(.N), by = cat]
DT[, id := rowid(cat)]
答案 1 :(得分:22)
为了使r-faq问题更加完整,使用sequence
和rle
的基础R替代方案:
df$num <- sequence(rle(df$cat)$lengths)
给出了预期的结果:
> df cat val num 4 aaa 0.05638315 1 2 aaa 0.25767250 2 1 aaa 0.30776611 3 5 aaa 0.46854928 4 3 aaa 0.55232243 5 10 bbb 0.17026205 1 8 bbb 0.37032054 2 6 bbb 0.48377074 3 9 bbb 0.54655860 4 7 bbb 0.81240262 5 13 ccc 0.28035384 1 14 ccc 0.39848790 2 11 ccc 0.62499648 3 15 ccc 0.76255108 4 12 ccc 0.88216552 5
如果df$cat
是因子变量,则需要首先将其包装在as.character
中:
df$num <- sequence(rle(as.character(df$cat))$lengths)
答案 2 :(得分:7)
这是一个选项,使用for
循环按组而不是行(如OP所做的)
for (i in unique(df$cat)) df$num[df$cat == i] <- seq_len(sum(df$cat == i))
答案 3 :(得分:5)
我想使用with your_table (tran_type) as (
select 'success' from dual
union all select 'failed' from dual
union all select '123456-001' from dual
union all select '654321-001' from dual
union all select '098765-002' from dual
union all select 'time out' from dual
)
select tran_type
from your_table
where regexp_like(tran_type, '^\d{6}-\d{3}$');
TRAN_TYPE
----------
123456-001
654321-001
098765-002
函数添加data.table
变体,这提供了更改排序的额外可能性,从而使其比rank()
解决方案更灵活,并且非常类似于RDBMS中的row_number函数。
seq_len()
答案 4 :(得分:4)
这是一个小的改进技巧,允许在组内排序“ val”:
# 1. Data set
set.seed(100)
df <- data.frame(
cat = c(rep("aaa", 5), rep("ccc", 5), rep("bbb", 5)),
val = runif(15))
# 2. 'dplyr' approach
df %>%
arrange(cat, val) %>%
group_by(cat) %>%
mutate(id = row_number())
答案 5 :(得分:1)
另一种dplyr
可能是:
df %>%
group_by(cat) %>%
mutate(num = 1:n())
cat val num
<fct> <dbl> <int>
1 aaa 0.0564 1
2 aaa 0.258 2
3 aaa 0.308 3
4 aaa 0.469 4
5 aaa 0.552 5
6 bbb 0.170 1
7 bbb 0.370 2
8 bbb 0.484 3
9 bbb 0.547 4
10 bbb 0.812 5
11 ccc 0.280 1
12 ccc 0.398 2
13 ccc 0.625 3
14 ccc 0.763 4
15 ccc 0.882 5
答案 6 :(得分:1)
在rowid()
中使用data.table
函数:
> set.seed(100)
> df <- data.frame(cat = c(rep("aaa", 5), rep("bbb", 5), rep("ccc", 5)), val = runif(15))
> df <- df[order(df$cat, df$val), ]
> df$num <- data.table::rowid(df$cat)
> df
cat val num
4 aaa 0.05638315 1
2 aaa 0.25767250 2
1 aaa 0.30776611 3
5 aaa 0.46854928 4
3 aaa 0.55232243 5
10 bbb 0.17026205 1
8 bbb 0.37032054 2
6 bbb 0.48377074 3
9 bbb 0.54655860 4
7 bbb 0.81240262 5
13 ccc 0.28035384 1
14 ccc 0.39848790 2
11 ccc 0.62499648 3
15 ccc 0.76255108 4
12 ccc 0.88216552 5
答案 7 :(得分:1)
另一种基础R解决方案将是split
每cat
lapply
个数据帧,之后使用1:nrow(x)
:添加编号为{{1}的列}。最后一步是用do.call
返回最后一个数据帧,即:
df_split <- split(df, df$cat)
df_lapply <- lapply(df_split, function(x) {
x$num <- seq_len(nrow(x))
return(x)
})
df <- do.call(rbind, df_lapply)
答案 8 :(得分:1)
非常简单、整洁的解决方案。
整个 data.frame 的行号
library(tidyverse)
iris %>%
mutate(row_num = seq_along(Sepal.Length)) %>%
head
Sepal.Length Sepal.Width Petal.Length Petal.Width Species row_num
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 2
3 4.7 3.2 1.3 0.2 setosa 3
.. ... ... ... ... ...... ...
148 6.5 3.0 5.2 2.0 virginica 148
149 6.2 3.4 5.4 2.3 virginica 149
150 5.9 3.0 5.1 1.8 virginica 150
data.frame 中按组划分的行数
iris %>%
group_by(Species) %>%
mutate(num_in_group=seq_along(Species)) %>%
as.data.frame
Sepal.Length Sepal.Width Petal.Length Petal.Width Species num_in_group
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 2
3 4.7 3.2 1.3 0.2 setosa 3
.. ... ... ... ... ...... ..
48 4.6 3.2 1.4 0.2 setosa 48
49 5.3 3.7 1.5 0.2 setosa 49
50 5.0 3.3 1.4 0.2 setosa 50
51 7.0 3.2 4.7 1.4 versicolor 1
52 6.4 3.2 4.5 1.5 versicolor 2
53 6.9 3.1 4.9 1.5 versicolor 3
.. ... ... ... ... ...... ..
98 6.2 2.9 4.3 1.3 versicolor 48
99 5.1 2.5 3.0 1.1 versicolor 49
100 5.7 2.8 4.1 1.3 versicolor 50
101 6.3 3.3 6.0 2.5 virginica 1
102 5.8 2.7 5.1 1.9 virginica 2
103 7.1 3.0 5.9 2.1 virginica 3
.. ... ... ... ... ...... ..
148 6.5 3.0 5.2 2.0 virginica 48
149 6.2 3.4 5.4 2.3 virginica 49
150 5.9 3.0 5.1 1.8 virginica 50