对于一个项目,我需要计算几个团队之间的匹配计划。
要求:
E.g。 有了4个团队(A,B,C和D),我希望能够计算出这个:
第1轮
第2轮
第3轮
问题在于,在第X轮中有一些选择,这使得在第X + 1轮比赛中无法进行任何比赛(球队已经与其他球队比赛过)。
我想我可以使用一些回溯技术,但我正在搜索是否有算法?
这将在c#中实现。
你知道怎么做吗?
答案 0 :(得分:3)
实际上,答案在评论中提供的link Olivier中。更具体地说,this answer。
它确实处理了Round的概念,除了它不是很明显。在该代码中,Tuple<string, string>
表示匹配(包含两个团队名称的项目),List<Tuple<string, string>>
表示一个回合(匹配集合)。
代码以List<List<Tuple<string, string>>>
。
我重构了一下代码,以便Match
和Round
的概念在代码中更明显。
以下是Match
和Round
类:
public class Match
{
public string Team1 { get; set; }
public string Team2 { get; set; }
public Match(string team1, string team2)
{
Team1 = team1;
Team2 = team2;
}
public override string ToString()
{
return string.Format("{0} vs {1}", Team1, Team2);
}
}
public class Round
{
public List<Match> Matches { get; private set; }
public Round()
{
Matches = new List<Match>();
}
public override string ToString()
{
return String.Join(Environment.NewLine, Matches) + Environment.NewLine;
}
}
这是执行魔术的代码(信用转到Nagg):
public static List<Round> ComputeFixtures(List<string> listTeam)
{
var result = new List<Round>();
var numberOfRounds = (listTeam.Count - 1);
var numberOfMatchesInARound = listTeam.Count / 2;
var teams = new List<string>();
teams.AddRange(listTeam.Skip(numberOfMatchesInARound).Take(numberOfMatchesInARound));
teams.AddRange(listTeam.Skip(1).Take(numberOfMatchesInARound - 1).ToArray().Reverse());
var numberOfTeams = teams.Count;
for (var roundNumber = 0; roundNumber < numberOfRounds; roundNumber++)
{
var round = new Round();
var teamIdx = roundNumber % numberOfTeams;
round.Matches.Add(new Match(teams[teamIdx], listTeam[0]));
for (var idx = 1; idx < numberOfMatchesInARound; idx++)
{
var firstTeamIndex = (roundNumber + idx) % numberOfTeams;
var secondTeamIndex = (roundNumber + numberOfTeams - idx) % numberOfTeams;
round.Matches.Add(new Match(teams[firstTeamIndex], teams[secondTeamIndex]));
}
result.Add(round);
}
return result;
}
以下是此代码的一些在线运行示例:
答案 1 :(得分:2)
我认为你采取了错误的方式。 我不是基于上一轮计算每一轮配对,而是先使用简单的双循环进行所有可能的配对,然后轮流随机分配游戏。
由于每个玩家将玩完全相同数量的游戏,因此必须存在此类分发。
答案 2 :(得分:1)
尝试循环播放。这是一个简单的调度算法,用于在进程间共享时隙,但是这个问题让我想起了它。
修改强>
现在这是Round-robin tournament的实现。如果我们有ODD团队数量,我们必须插入一个虚拟团队,否则就会有一个没有对手的团队。由于轮数是偶数,所以总轮数是(NumberOfTeams-1)。在一开始我们建立了第一轮:
A B C D E F G H
H G F E D C B A
所以,A队 - H队,B队 - G队等
从现在开始,我们将一支球队固定下来,例如A.然后我们将A_Side球队从第二位置转移到右侧。最后一支队伍将进入第2位。(A B C D E F G H将是A H B C D E F G)。请参阅rotate_A_side()递归方法(只是为了好玩)。
B_Sides的一半向左移动。这将使H G F E D - G F E D。
由于球队选择是对称的(A玩H,然后H玩A),B_Side的上半部分是A_Side低部队的反向副本。因此,D C B A将是C B H A)。请参阅rotate_B_side()。
所以,第2轮是:
A H B C D E F G
G F E D C B H A
要进行所有轮次,只需重复上述换档步骤即可。见NextRound()
这是一个实现算法的c#类:
class Teams
{
private int[] A_Side;
private int[] B_Side;
public int[,] PlayingCounter;
public int RoundCounter = 1;
public bool DummyTeam = false; // ODD number of teams -> one team will no be able to play.
public bool NextRoundExists
{
get
{
return (RoundCounter < B_Side.Length-1);
}
}
public Teams(int NumberOfTeams)
{
if (NumberOfTeams % 2 != 0)
{
NumberOfTeams++; DummyTeam = true;
}
A_Side = new int[NumberOfTeams];
B_Side = new int[NumberOfTeams];
PlayingCounter = new int[NumberOfTeams,NumberOfTeams]; // Counting to see if alg is correct
int x,y;
for (x=0; x<NumberOfTeams; x++)
{
A_Side[x] = x + 1;
B_Side[NumberOfTeams-x-1]=x+1;
for (y=0;y<NumberOfTeams;y++)
{
PlayingCounter[x,y] = 0;
}
}
}
private void rotate_A_Side(int AtPos)
{
if (AtPos == 1)
{
int iO = A_Side[A_Side.Length - 1];
rotate_A_Side(AtPos+1);
A_Side[1] = iO;
}
else
{
if (AtPos < A_Side.Length - 1) { rotate_A_Side(AtPos + 1); }
A_Side[AtPos] = A_Side[AtPos - 1];
}
}
public void rotate_B_Side()
{
int i;
for (i = 0; i<B_Side.Length/2 ; i++)
{
B_Side[i] = B_Side[i + 1];
}
for (i = B_Side.Length / 2; i < B_Side.Length; i++)
{
B_Side[i] = A_Side[B_Side.Length/2 - (i -B_Side.Length/2 + 1) ];
}
}
public bool NextRound()
{
if (NextRoundExists)
{
RoundCounter++; // Next round
rotate_A_Side(1); // A side rotation
rotate_B_Side(); // B side rotation
LogRound(); // Update counters
return true;
}
else return false;
}
public void LogRound()
{
for (int x = 0; x < A_Side.Length; x++)
{
PlayingCounter[A_Side[x]-1, B_Side[x]-1]++;
PlayingCounter[B_Side[x]-1, A_Side[x]-1]++;
}
}
public string GetCounters()
{
string return_value = "";
for (int y = 0; y < A_Side.Length; y++)
{
for (int x = 0; x < A_Side.Length; x++)
{
return_value += String.Format(" {0:D3}", PlayingCounter[y, x]);
}
return_value += System.Environment.NewLine;
}
return return_value;
}
public string GetCurrentRound()
{
string Round = "Round #" + RoundCounter.ToString() + " ";
for (int x = 0; x < B_Side.Length; x++)
{
Round += String.Format("Team {0} - Team {1};", A_Side[x], B_Side[x]);
}
return Round;
}
}
从您的代码中,您可以像以下一样使用它:
Teams Rounds = new Teams(22);
if (Rounds.DummyTeam) {
// Anything to do if nober of teams is odd?
}
Rounds.LogRound(); // DEBUG - you can check number of matches ;-)
while (Rounds.NextRoundExists) // While we have next round...
{
Rounds.NextRound(); // ... generate the next
// round (team assignment)
// Your can tack using: Rounds.GetCurrentRound()
}
// If you want to see the number of matches, call Rounds.GetCounters();
6小组给了我以下输出:
第1轮A-F; B-E; C-D; D-C; E-B; F A ;
第二轮A-E; F-D; B-C; C-B; D-F; E-A;第3轮A-D; E-C; F-B; B-F; C-E; D-A;
第4轮A-C; D B ; E-F; F-E; B-D; C-A;
第#轮第5轮A-B; C-F; D-E; E-D; F-C; B-A;我用A等替换了Team 1
应该改进rotate_B_Side(),这是一种快速的方法。
答案 3 :(得分:0)
我快速使用,使用简单的方法
这导致游戏的分布似乎有些“僵硬”。
schedule_tournament(new List<string> { "A", "B", "C" });
schedule_tournament(new List<string> { "A", "B", "C", "D", });
schedule_tournament(new List<string> { "A", "B", "C", "D", "E" });
schedule_tournament(new List<string> { "A", "B", "C", "D", "E", "F" });
schedule_tournament(new List<string> { "A", "B", "C", "D", "E", "F", "G" });
...
private void schedule_tournament(List<string> teams)
{
List<string> games = new List<string>();
List<string> rounds = new List<string>();
// get all possible games
for (int i = 0; i < teams.Count; i++)
{
for (int j = i + 1; j < teams.Count; j++)
{
string game_name = string.Format("{0}{1}", teams[i], teams[j]);
if (!games.Contains(game_name)) games.Add(game_name);
}
}
// allocate games to rounds
for (int i = 0; i < games.Count; i++)
{
bool allocated = false;
for (int j = 0; j < rounds.Count; j++)
{
string team_1 = games[i].Substring(0, 1);
string team_2 = games[i].Substring(1, 1);
if (!rounds[j].Contains(team_1) && !rounds[j].Contains(team_2))
{
rounds[j] += " - " + games[i];
allocated = true;
break;
}
}
if (!allocated)
{
rounds.Add(games[i]);
}
}
Console.WriteLine("{0} teams, play {1} games in {2} rounds", teams.Count, games.Count, rounds.Count);
for (int i = 0; i < rounds.Count; i++) Console.WriteLine("Round {0}: {1}", i + 1, rounds[i]);
}
输出是:
3 teams, play 3 games in 3 rounds
Round 1: AB
Round 2: AC
Round 3: BC
4 teams, play 6 games in 3 rounds
Round 1: AB - CD
Round 2: AC - BD
Round 3: AD - BC
5 teams, play 10 games in 7 rounds
Round 1: AB - CD
Round 2: AC - BD
Round 3: AD - BC
Round 4: AE
Round 5: BE
Round 6: CE
Round 7: DE
6 teams, play 15 games in 7 rounds
Round 1: AB - CD - EF
Round 2: AC - BD
Round 3: AD - BC
Round 4: AE - BF
Round 5: AF - BE
Round 6: CE - DF
Round 7: CF - DE
7 teams, play 21 games in 7 rounds
Round 1: AB - CD - EF
Round 2: AC - BD - EG
Round 3: AD - BC - FG
Round 4: AE - BF - CG
Round 5: AF - BE - DG
Round 6: AG - CE - DF
Round 7: BG - CF - DE