确认我理解矩阵决定因素

时间:2009-08-13 07:54:32

标签: 3d determinants matrix-math

基本上我已经尝试在过去几周内了解矩阵数学,并在阅读(并重新阅读)许多数学重量级文章和文档之后认为我有足够的理解,但我只是想确定一下!

我最终得到的定义是:

/*
    Minor
    -----
    -A determinant of a sub matrix
    -The sub matrix used to calculate a minor can be obtained by removing more then one row/column from the original matrix
    -First minors are minors of a sub matrix where only the row and column of a single element have been removed

    Cofactor
    --------
    -The (signed) minor of a single element from a matrix
     ie. the minor of element 2,3 is the determinant of the submatrix, of the matrix, defined by removing row 2 and column 3

    Determinant
    -----------
    -1. Choose any single row or column from a Matrix.
     2. For each element in the row/column, multiply the value of the element against the First Minor of that element.
     3. This result is then multiplied by (-1 raised to the power of the elements row index + its column index) which will give the result of step 2 a sign.
     4. You then simply sum all these results to get the determinant (a real number) for the Matrix.
*/

请告诉我理解中的任何漏洞?

来源
http://en.wikipedia.org / Cofactor_(linear_algebra)& / Minor_(linear_algebra)& /行列式 http://easyweb.easynet.co.uk/~mrmeanie/matrix/matrices.htm
http://www.geometrictools.com/Documentation/LaplaceExpansionTheorem.pdf(最有帮助的)
Geometric tools for computer graphics(这可能有缺页,我有完整的副本)

1 个答案:

答案 0 :(得分:3)

听起来像你理解决定因素 - 现在出去写代码!尝试使用Cramer规则为3个或更多变量中的联立线性方程编写求解器。

由于你标记了这个问题3dgraphics,矩阵和向量乘法可能是下一个探索的好地方。它们在3D图形编程中无处不在。