基本上我已经尝试在过去几周内了解矩阵数学,并在阅读(并重新阅读)许多数学重量级文章和文档之后认为我有足够的理解,但我只是想确定一下!
我最终得到的定义是:
/*
Minor
-----
-A determinant of a sub matrix
-The sub matrix used to calculate a minor can be obtained by removing more then one row/column from the original matrix
-First minors are minors of a sub matrix where only the row and column of a single element have been removed
Cofactor
--------
-The (signed) minor of a single element from a matrix
ie. the minor of element 2,3 is the determinant of the submatrix, of the matrix, defined by removing row 2 and column 3
Determinant
-----------
-1. Choose any single row or column from a Matrix.
2. For each element in the row/column, multiply the value of the element against the First Minor of that element.
3. This result is then multiplied by (-1 raised to the power of the elements row index + its column index) which will give the result of step 2 a sign.
4. You then simply sum all these results to get the determinant (a real number) for the Matrix.
*/
请告诉我理解中的任何漏洞?
来源
http://en.wikipedia.org / Cofactor_(linear_algebra)& / Minor_(linear_algebra)& /行列式
http://easyweb.easynet.co.uk/~mrmeanie/matrix/matrices.htm
http://www.geometrictools.com/Documentation/LaplaceExpansionTheorem.pdf(最有帮助的)
Geometric tools for computer graphics(这可能有缺页,我有完整的副本)
答案 0 :(得分:3)
听起来像你理解决定因素 - 现在出去写代码!尝试使用Cramer规则为3个或更多变量中的联立线性方程编写求解器。
由于你标记了这个问题3dgraphics,矩阵和向量乘法可能是下一个探索的好地方。它们在3D图形编程中无处不在。