我正在尝试完成一项要求我为二进制算术编写三个函数的赋值。 badd()是为我提供的,所以我用它来帮助编写bsub()和bmult()函数。但是,我无法理解如何执行bdiv()函数。我知道我需要使用右移和我的bsubb()函数迭代这些位,但我不知道如何实现它。以下是我到目前为止所写的功能。如果你发现我在编写错误时会告诉我(意思是bsub()和bmult())。谢谢。
/** This function adds the two arguments using bitwise operators. Your
* implementation should not use arithmetic operators except for loop
* control. Integers are 32 bits long. This function prints a message
* saying "Overflow occurred\n" if a two's complement overflow occurs
* during the addition process. The sum is returned as the value of
* the function.
*/
int badd(int x,int y){
int i;
char sum;
char car_in=0;
char car_out;
char a,b;
unsigned int mask=0x00000001;
int result=0;
for(i=0;i<32;i++){
a=(x&mask)!=0;
b=(y&mask)!=0;
car_out=car_in & (a|b) |a&b;
sum=a^b^car_in;
if(sum) {
result|=mask;
}
if(i!=31) {
car_in=car_out;
} else {
if(car_in!=car_out) {
printf("Overflow occurred\n");
}
}
mask<<=1;
}
return result;
}
// subracts two integers by finding the compliemnt
// of "y", adding 1, and using the badd() function
// to add "-y" and "x"
int bsub(int x, int y){
return badd(x, badd(~y, 1));
}
//add x to total for however many y
int bmult(int x,int y){
int total;
int i;
for(i=0; i < = y; i++)
{
total = badd(total,x)
}
return total;
}
// comment me
unsigned int bdiv(unsigned int dividend, unsigned int divisor){
// write me
return 0;
}
答案 0 :(得分:2)
这里不多说,它只是base-2中的一些基本数学:
unsigned int bmult(unsigned int x, unsigned int y)
{
int total = 0;
int i;
/* if the i-th bit is non-zero, add 'x' to total */
/* Multiple total by 2 each step */
for(i = 32 ; i >= 0 ; i--)
{
total <<= 1;
if( (y & (1 << i)) >> i )
{
total = badd(total, x);
}
}
return total;
}
unsigned int bdiv(unsigned int dividend, unsigned int divisor)
{
int i, quotient = 0, remainder = 0;
if(divisor == 0) { printf("div by zero\n"); return 0; }
for(i = 31 ; i >= 0 ; i--)
{
quotient <<= 1;
remainder <<= 1;
remainder |= (dividend & (1 << i)) >> i;
if(remainder >= divisor)
{
remainder = bsub(remainder, divisor);
quotient |= 1;
}
}
return quotient;
}
答案 1 :(得分:1)
在下面的代码中,我使用与问题相同的想法实现加法和减法。唯一的实际区别在于,在我的实现中,这两个函数还接受一个进位/借位,并产生一个进位/借出位。
进位位用于通过加法实现减法,该位有助于获得进位和借位的正确值。基本上,我使用状态寄存器中的进位标志实现典型的类似CPU的加法和减法。
然后使用进位/借位来通过减法实现比较。我在没有>=
运算符的情况下实现了比较,我也考虑算术运算,因为它的性质不太明显。由于使用restoring division algorithm。
我也避免使用!
运算符,而是使用^1
。
除法函数将除数作为2 unsigned ints
,它是最重要和最不重要的部分。最后,它用剩余部分取代最重要的部分,用商除掉最不重要的部分。因此,它执行除法和模运算,并以典型的CPU方式(例如x86 DIV
指令)进行处理。该函数在成功时返回1,在溢出/除0时返回0。
主要功能做了一个简单的测试。它将除法函数的结果与直接除法的结果进行比较,并在不匹配时以错误消息结束。
我在测试部分中使用unsigned long long
来测试divisor = UINT_MAX
而不会陷入无限循环。可能需要花费太多时间来测试被除数和除数的整个值范围,这就是为什么我将它们分别设置为0xFFFF和0xFF而不是UINT_MAX
。
代码:
#include <stdio.h>
#include <limits.h>
unsigned add(unsigned a, unsigned b, unsigned carryIn, unsigned* carryOut)
{
unsigned sum = a ^ b ^ carryIn;
unsigned carryOuts = a & b | (a | b) & carryIn;
*carryOut = 0;
if (sum & (carryOuts << 1))
sum = add(sum, carryOuts << 1, 0, carryOut);
else
sum |= carryOuts << 1;
*carryOut |= (carryOuts & (UINT_MAX / 2 + 1)) >> (sizeof(unsigned) * CHAR_BIT - 1); // +-*/ are OK in constants
return sum;
}
unsigned sub(unsigned a, unsigned b, unsigned borrowIn, unsigned* borrowOut)
{
unsigned diff = add(a, ~b, borrowIn ^ 1, borrowOut);
*borrowOut ^= 1;
return diff;
}
unsigned less(unsigned a, unsigned b)
{
unsigned borrowOut;
sub(a, b, 0, &borrowOut);
return borrowOut;
}
int udiv(unsigned* dividendh, unsigned* dividendl, unsigned divisor)
{
int i;
unsigned tmp;
if (less(*dividendh, divisor) ^ 1/* *dividendh >= divisor */)
return 0; // overflow
for (i = 0; i < sizeof(unsigned) * CHAR_BIT; i++)
{
if (less(*dividendh, UINT_MAX / 2 + 1) ^ 1/* *dividendh >= 0x80...00 */)
{
*dividendh = (*dividendh << 1) | (*dividendl >> (sizeof(unsigned) * CHAR_BIT - 1));
*dividendl <<= 1;
*dividendh = sub(*dividendh, divisor, 0, &tmp);/* *dividendh -= divisor; */
*dividendl |= 1;
}
else
{
*dividendh = (*dividendh << 1) | (*dividendl >> (sizeof(unsigned) * CHAR_BIT - 1));
*dividendl <<= 1;
if (less(*dividendh, divisor) ^ 1/* *dividendh >= divisor */)
{
*dividendh = sub(*dividendh, divisor, 0, &tmp);/* *dividendh -= divisor; */
*dividendl |= 1;
}
}
}
return 1;
}
int udiv2(unsigned* dividendh, unsigned* dividendl, unsigned divisor)
{
unsigned long long dividend =
((unsigned long long)*dividendh << (sizeof(unsigned) * CHAR_BIT)) | *dividendl;
if (*dividendh >= divisor)
return 0; // overflow
*dividendl = (unsigned)(dividend / divisor);
*dividendh = (unsigned)(dividend % divisor);
return 1;
}
int main(void)
{
unsigned long long dividend, divisor;
for (dividend = 0; dividend <= /*UINT_MAX*/0xFFFF; dividend++)
for (divisor = 0; divisor <= /*UINT_MAX*/0xFF; divisor++)
{
unsigned divh = 0, divl = (unsigned)dividend, divr = (unsigned)divisor;
unsigned divh2 = 0, divl2 = (unsigned)dividend;
printf("0x%08X/0x%08X=", divl, divr);
if (udiv(&divh, &divl, divr))
printf("0x%08X.0x%08X", divl, divh);
else
printf("ovf");
printf(" ");
if (udiv2(&divh2, &divl2, divr))
printf("0x%08X.0x%08X", divl2, divh2);
else
printf("ovf");
if ((divl != divl2) || (divh != divh2))
{
printf(" err");
return -1;
}
printf("\n");
}
return 0;
}
答案 2 :(得分:0)
重复此过程,直到被除数为0或1