从字符串列表中找到最佳子集以匹配给定字符串

时间:2012-09-12 18:17:44

标签: python string algorithm matching fuzzy-search

我有一个字符串

s = "mouse"

和字符串列表

sub_strings = ["m", "o", "se", "e"]

我需要找出匹配s的列表中sub_strings的最佳和最短匹配子集是什么。 做这个的最好方式是什么? 理想的结果是[“m”,“o”,“se”],因为他们一起拼写mose

3 个答案:

答案 0 :(得分:2)

import difflib
print difflib.get_close_matches(target_word,list_of_possibles)

但不幸的是,它不适用于上面的例子 你可以使用Levenstein距离......

def levenshtein_distance(first, second):
    """Find the Levenshtein distance between two strings."""
    if len(first) > len(second):
        first, second = second, first
    if len(second) == 0:
        return len(first)
    first_length = len(first) + 1
    second_length = len(second) + 1
    distance_matrix = [[0] * second_length for x in range(first_length)]
    for i in range(first_length):
       distance_matrix[i][0] = i
    for j in range(second_length):
       distance_matrix[0][j]=j
    for i in xrange(1, first_length):
        for j in range(1, second_length):
            deletion = distance_matrix[i-1][j] + 1
            insertion = distance_matrix[i][j-1] + 1
            substitution = distance_matrix[i-1][j-1]
            if first[i-1] != second[j-1]:
                substitution += 1
            distance_matrix[i][j] = min(insertion, deletion, substitution)
    return distance_matrix[first_length-1][second_length-1]

sub_strings = ["mo", "m,", "o", "se", "e"]
s="mouse"
print sorted(sub_strings,key = lambda x:levenshtein_distance(x,s))[0]

这将始终为您的目标提供“最接近”的单词(对于最接近的某些定义)

levenshtein功能被盗:http://www.korokithakis.net/posts/finding-the-levenshtein-distance-in-python/

答案 1 :(得分:2)

您可以使用正则表达式:

import re

def matches(s, sub_strings):
    sub_strings = sorted(sub_strings, key=len, reverse=True)
    pattern = '|'.join(re.escape(substr) for substr in sub_strings)
    return re.findall(pattern, s)

这至少是短暂而快速的,但它不一定能找到最佳匹配组合;太贪心了。例如,

matches("bears", ["bea", "be", "ars"])

返回["bea"]时应返回["be", "ars"]


代码说明:

  • 第一行按长度对子字符串进行排序,以便最长的字符串出现在列表的开头。这可以确保正则表达式更喜欢较长的匹配而不是较短的匹配。

  • 第二行创建一个正则表达式模式,由所有子串组成,由|符号分隔,表示“或”。

  • 第三行只使用re.findall函数查找给定字符串s中模式的所有匹配项。

答案 2 :(得分:2)

此解决方案基于用户this answerRunning Wild。它使用Stefan Behnel的the acora package使用Aho–Corasick algorithm有效地找到目标中子串的所有匹配项,然后使用dynamic programming找到答案。

import acora
import collections

def best_match(target, substrings):
    """
    Find the best way to cover the string `target` by non-overlapping
    matches with strings taken from `substrings`. Return the best
    match as a list of substrings in order. (The best match is one
    that covers the largest number of characters in `target`, and
    among all such matches, the one using the fewest substrings.)

    >>> best_match('mouse', ['mo', 'ou', 'us', 'se'])
    ['mo', 'us']
    >>> best_match('aaaaaaa', ['aa', 'aaa'])
    ['aaa', 'aa', 'aa']
    >>> best_match('abracadabra', ['bra', 'cad', 'dab'])
    ['bra', 'cad', 'bra']
    """
    # Find all occurrences of the substrings in target and store them
    # in a dictionary by their position.
    ac = acora.AcoraBuilder(*substrings).build()
    matches = collections.defaultdict(set)
    for match, pos in ac.finditer(target):
        matches[pos].add(match)

    n = len(target)
    # Array giving the best (score, list of matches) found so far, for
    # each initial substring of the target.
    best = [(0, []) for _ in xrange(n + 1)]
    for i in xrange(n):
        bi = best[i]
        bj = best[i + 1]
        if bi[0] > bj[0] or bi[0] == bj[0] and len(bi[1]) < bj[1]:
            best[i + 1] = bi
        for m in matches[i]:
            j = i + len(m)
            bj = best[j]
            score = bi[0] + len(m)
            if score > bj[0] or score == bj[0] and len(bi[1]) < len(bj[1]):
                best[j] = (score, bi[1] + [m])
    return best[n][1]