如何使用PIL确定具有共享值的像素区域

时间:2012-09-07 16:19:54

标签: python numpy scipy python-imaging-library cluster-analysis

我需要将图像划分为RGB值通过某个测试的像素区域 我可以扫描图像并检查每个像素的值,但是将它们聚类成区域然后获得那些区域坐标(x,y,宽度,高度)的部分让我完全黑暗:) 这是我到目前为止的代码

from PIL import Image

def detectRedRegions(PILImage):
      image = PILImage.load()
      width, height = PILImage.size
      reds = []
      h = 0
      while h < height:
        w = 0
        while w < width:
          px = image[w, h]
          if is_red(px):
            reds.append([w, h])
            # Here's where I'm being clueless 
          w +=1
        h +=1

我读了很多关于聚类的内容,但是我无法围绕这个主题,任何符合我需求的代码示例都会很棒(并且希望启发

谢谢!

2 个答案:

答案 0 :(得分:3)

[编辑]

虽然下面的解决方案有效,但可以做得更好。这是一个名称更好,性能更好的版本:

from itertools import product
from PIL import Image, ImageDraw


def closed_regions(image, test):
    """
    Return all closed regions in image who's pixels satisfy test.
    """
    pixel = image.load()
    xs, ys = map(xrange, image.size)
    neighbors = dict((xy, set([xy])) for xy in product(xs, ys) if test(pixel[xy]))
    for a, b in neighbors:
        for cd in (a + 1, b), (a, b + 1):
            if cd in neighbors:
                neighbors[a, b].add(cd)
                neighbors[cd].add((a, b))
    seen = set()
    def component(node, neighbors=neighbors, seen=seen, see=seen.add):
        todo = set([node])
        next_todo = todo.pop
        while todo:
            node = next_todo()
            see(node)
            todo |= neighbors[node] - seen
            yield node
    return (set(component(node)) for node in neighbors if node not in seen)


def boundingbox(coordinates):
    """
    Return the bounding box that contains all coordinates.
    """
    xs, ys = zip(*coordinates)
    return min(xs), min(ys), max(xs), max(ys)


def is_black_enough(pixel):
    r, g, b = pixel
    return r < 10 and g < 10 and b < 10


if __name__ == '__main__':

    image = Image.open('some_image.jpg')
    draw = ImageDraw.Draw(image)
    for rect in disjoint_areas(image, is_black_enough):
        draw.rectangle(boundingbox(region), outline=(255, 0, 0))
    image.show()

与下面的disjoint_areas()不同,closed_regions()会返回像素坐标集而不是其边界框。

此外,如果我们使用flooding而不是连接组件算法,我们可以使它更简单,速度提高一倍:

from itertools import chain, product
from PIL import Image, ImageDraw


flatten = chain.from_iterable


def closed_regions(image, test):
    """
    Return all closed regions in image who's pixel satisfy test.
    """
    pixel = image.load()
    xs, ys = map(xrange, image.size)
    todo = set(xy for xy in product(xs, ys) if test(pixel[xy]))
    while todo:
        region = set()
        edge = set([todo.pop()])
        while edge:
            region |= edge
            todo -= edge
            edge = todo.intersection(
                flatten(((x - 1, y), (x, y - 1), (x + 1, y), (x, y + 1)) for x, y in edge))
        yield region

# rest like above

受到Eric S. Raymond's version of floodfill的启发。

[/编辑]

有人可能会使用洪水填充,但我喜欢这个:

from collections import defaultdict
from PIL import Image, ImageDraw


def connected_components(edges):
    """
    Given a graph represented by edges (i.e. pairs of nodes), generate its
    connected components as sets of nodes.

    Time complexity is linear with respect to the number of edges.
    """
    neighbors = defaultdict(set)
    for a, b in edges:
        neighbors[a].add(b)
        neighbors[b].add(a)
    seen = set()
    def component(node, neighbors=neighbors, seen=seen, see=seen.add):
        unseen = set([node])
        next_unseen = unseen.pop
        while unseen:
            node = next_unseen()
            see(node)
            unseen |= neighbors[node] - seen
            yield node
    return (set(component(node)) for node in neighbors if node not in seen)


def matching_pixels(image, test):
    """
    Generate all pixel coordinates where pixel satisfies test.
    """
    width, height = image.size
    pixels = image.load()
    for x in xrange(width):
        for y in xrange(height):
            if test(pixels[x, y]):
                yield x, y


def make_edges(coordinates):
    """
    Generate all pairs of neighboring pixel coordinates.
    """
    coordinates = set(coordinates)
    for x, y in coordinates:
        if (x - 1, y - 1) in coordinates:
            yield (x, y), (x - 1, y - 1)
        if (x, y - 1) in coordinates:
            yield (x, y), (x, y - 1)
        if (x + 1, y - 1) in coordinates:
            yield (x, y), (x + 1, y - 1)
        if (x - 1, y) in coordinates:
            yield (x, y), (x - 1, y)
        yield (x, y), (x, y)


def boundingbox(coordinates):
    """
    Return the bounding box of all coordinates.
    """
    xs, ys = zip(*coordinates)
    return min(xs), min(ys), max(xs), max(ys)


def disjoint_areas(image, test):
    """
    Return the bounding boxes of all non-consecutive areas
    who's pixels satisfy test.
    """
    for each in connected_components(make_edges(matching_pixels(image, test))):
        yield boundingbox(each)


def is_black_enough(pixel):
    r, g, b = pixel
    return r < 10 and g < 10 and b < 10


if __name__ == '__main__':

    image = Image.open('some_image.jpg')
    draw = ImageDraw.Draw(image)
    for rect in disjoint_areas(image, is_black_enough):
        draw.rectangle(rect, outline=(255, 0, 0))
    image.show()

这里,满足is_black_enough()的相邻像素对被解释为图中的边。此外,每个像素都被视为自己的邻居。由于这种重新解释,我们可以使用连接组件算法的图形,这很容易实现。结果是所有区域的边界框的顺序,其像素满足is_black_enough()

答案 1 :(得分:2)

您想要的是图像处理中的区域标注或连接组件检测。 scipy.ndimage包中提供了一个实现。 因此,如果您安装了numpy + scipy,则以下内容应该可以正常工作

import numpy as np
import scipy.ndimage as ndi
import Image

image = Image.load()
# convert to numpy array (no data copy done since both use buffer protocol)
image = np.asarray(image)
# generate a black and white image marking red pixels as 1
bw = is_red(image)
# labeling : each region is associated with an int
labels, n = ndi.label(bw)
# provide bounding box for each region in the form of tuples of slices
objects = ndi.find_objects(labels)