这个__global__
函数用于递增数字并计算某些单元格中有多少粒子。
__global__ void Set_Nc_GPU_0831(int *nc,int *index,SP DSMC)
{
int tidx;
tidx=threadIdx.x+blockDim.x*blockIdx.x;
atomicAdd(&nc[index[tidx]],1);
}
我正在使用速度慢的原子操作。所以我想用其他一些函数或算法替换原子函数。
有没有其他方法可以修改这个简单的__global__
函数?
答案 0 :(得分:3)
这是一个迟到的答案,用于从未答复的列表中删除此问题。
您已经认识到计算某个单元格内有多少个粒子等同于构建直方图。直方图的构造是一个研究得很好的问题。 Shane Cook的书(CUDA编程)包含了关于这个主题的很好的讨论。此外,CUDA样本包含直方图示例。此外,histogram construction by CUDA Thrust也是可能的。最后,CUDA Programming Blog包含更多洞察力。
下面我提供了一个代码来比较5种不同版本的直方图计算:
如果您在Kepler K20c上运行典型10MB数据的代码,您将获得以下时间:
83ms
; 15.8ms
; 17.7ms
; 40ms
。正如您所看到的,令人惊讶的是,您的“蛮力”解决方案是最快的。这是合理的,因为对于最新的架构(你的帖子是2012年8月Kepler尚未发布,至少在欧洲发布),原子操作非常快。
以下是代码:
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/generate.h>
#include <thrust/adjacent_difference.h>
#include <thrust/binary_search.h>
#define SIZE (100*1024*1024) // 100 MB
/**********************************************/
/* FUNCTION TO GENERATE RANDOM UNSIGNED CHARS */
/**********************************************/
unsigned char* big_random_block(int size) {
unsigned char *data = (unsigned char*)malloc(size);
for (int i=0; i<size; i++)
data[i] = rand();
return data;
}
/***************************************/
/* GPU HISTOGRAM CALCULATION VERSION 1 */
/***************************************/
__global__ void histo_kernel1(unsigned char *buffer, long size, unsigned int *histo ) {
// --- The number of threads does not cover all the data size
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd(&histo[buffer[i]], 1);
i += stride;
}
}
/***************************************/
/* GPU HISTOGRAM CALCULATION VERSION 2 */
/***************************************/
__global__ void histo_kernel2(unsigned char *buffer, long size, unsigned int *histo ) {
// --- Allocating and initializing shared memory to store partial histograms
__shared__ unsigned int temp[256];
temp[threadIdx.x] = 0;
__syncthreads();
// --- The number of threads does not cover all the data size
int i = threadIdx.x + blockIdx.x * blockDim.x;
int offset = blockDim.x * gridDim.x;
while (i < size)
{
atomicAdd(&temp[buffer[i]], 1);
i += offset;
}
__syncthreads();
// --- Summing histograms
atomicAdd(&(histo[threadIdx.x]), temp[threadIdx.x]);
}
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/********/
/* MAIN */
/********/
void main(){
// --- Generating an array of SIZE unsigned chars
unsigned char *buffer = (unsigned char*)big_random_block(SIZE);
/********************/
/* CPU COMPUTATIONS */
/********************/
// --- Allocating host memory space and initializing the host-side histogram
unsigned int histo[256];
for (int i=0; i<256; i++) histo [i] = 0;
clock_t start_CPU, stop_CPU;
// --- Histogram calculation on the host
start_CPU = clock();
for (int i=0; i<SIZE; i++) histo [buffer[i]]++;
stop_CPU = clock();
float elapsedTime = (float)(stop_CPU - start_CPU) / (float)CLOCKS_PER_SEC * 1000.0f;
printf("Time to generate (CPU): %3.1f ms\n", elapsedTime);
// --- Indirect check of the result
long histoCount = 0;
for (int i=0; i<256; i++) { histoCount += histo[i]; }
printf("Histogram Sum: %ld\n", histoCount);
/********************/
/* GPU COMPUTATIONS */
/********************/
// --- Initializing the device-side data
unsigned char *dev_buffer;
gpuErrchk(cudaMalloc((void**)&dev_buffer,SIZE));
gpuErrchk(cudaMemcpy(dev_buffer, buffer, SIZE, cudaMemcpyHostToDevice));
// --- Allocating device memory space for the device-side histogram
unsigned int *dev_histo;
gpuErrchk(cudaMalloc((void**)&dev_histo,256*sizeof(long)));
// --- GPU timing
cudaEvent_t start, stop;
gpuErrchk(cudaEventCreate(&start));
gpuErrchk(cudaEventCreate(&stop));
// --- ATOMICS
// --- Histogram calculation on the device - 2x the number of multiprocessors gives best timing
gpuErrchk(cudaEventRecord(start,0));
gpuErrchk(cudaMemset(dev_histo,0,256*sizeof(int)));
cudaDeviceProp prop;
gpuErrchk(cudaGetDeviceProperties(&prop,0));
int blocks = prop.multiProcessorCount;
histo_kernel1<<<blocks*2,256>>>(dev_buffer, SIZE, dev_histo);
gpuErrchk(cudaMemcpy(histo,dev_histo,256*sizeof(int),cudaMemcpyDeviceToHost));
gpuErrchk(cudaEventRecord(stop,0));
gpuErrchk(cudaEventSynchronize(stop));
gpuErrchk(cudaEventElapsedTime(&elapsedTime,start,stop));
printf("Time to generate (GPU): %3.1f ms\n", elapsedTime);
histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// --- Check the correctness of the results via the host
for (int i=0; i<SIZE; i++) histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0) printf( "Failure at %d! Off by %d\n", i, histo[i] );
}
// --- ATOMICS IN SHARED MEMORY
// --- Histogram calculation on the device - 2x the number of multiprocessors gives best timing
gpuErrchk(cudaEventRecord(start,0));
gpuErrchk(cudaMemset(dev_histo,0,256*sizeof(int)));
gpuErrchk(cudaGetDeviceProperties(&prop,0));
blocks = prop.multiProcessorCount;
histo_kernel2<<<blocks*2,256>>>(dev_buffer, SIZE, dev_histo);
gpuErrchk(cudaMemcpy(histo,dev_histo,256*sizeof(int),cudaMemcpyDeviceToHost));
gpuErrchk(cudaEventRecord(stop,0));
gpuErrchk(cudaEventSynchronize(stop));
gpuErrchk(cudaEventElapsedTime(&elapsedTime,start,stop));
printf("Time to generate (GPU): %3.1f ms\n", elapsedTime);
histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// --- Check the correctness of the results via the host
for (int i=0; i<SIZE; i++) histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0) printf( "Failure at %d! Off by %d\n", i, histo[i] );
}
// --- CUDA THRUST
gpuErrchk(cudaEventRecord(start,0));
// --- Wrapping dev_buffer raw pointer with a device_ptr and initializing a device_vector with it
thrust::device_ptr<unsigned char> dev_ptr(dev_buffer);
thrust::device_vector<unsigned char> dev_buffer_thrust(dev_ptr, dev_ptr + SIZE);
// --- Sorting data to bring equal elements together
thrust::sort(dev_buffer_thrust.begin(), dev_buffer_thrust.end());
// - The number of histogram bins is equal to the maximum value plus one
int num_bins = dev_buffer_thrust.back() + 1;
// --- Resize histogram storage
thrust::device_vector<int> d_histogram;
d_histogram.resize(num_bins);
// --- Find the end of each bin of values
thrust::counting_iterator<int> search_begin(0);
thrust::upper_bound(dev_buffer_thrust.begin(), dev_buffer_thrust.end(),
search_begin, search_begin + num_bins,
d_histogram.begin());
// --- Compute the histogram by taking differences of the cumulative histogram
thrust::adjacent_difference(d_histogram.begin(), d_histogram.end(),
d_histogram.begin());
thrust::host_vector<int> h_histogram(d_histogram);
gpuErrchk(cudaEventRecord(stop,0));
gpuErrchk(cudaEventSynchronize(stop));
gpuErrchk(cudaEventElapsedTime(&elapsedTime,start,stop));
printf("Time to generate (GPU): %3.1f ms\n", elapsedTime);
histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += h_histogram[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// --- Check the correctness of the results via the host
for (int i=0; i<SIZE; i++) h_histogram[buffer[i]]--;
for (int i=0; i<256; i++) {
if (h_histogram[i] != 0) printf( "Failure at %d! Off by %d\n", i, h_histogram[i] );
}
gpuErrchk(cudaEventDestroy(start));
gpuErrchk(cudaEventDestroy(stop));
gpuErrchk(cudaFree(dev_histo));
gpuErrchk(cudaFree(dev_buffer));
free(buffer);
getchar();
}
答案 1 :(得分:2)
根据乔治的评论,在这个答案中我正在处理2D情况,其中粒子不在线上,而是在平面的一部分上。
实际上,2D情况只需要对上面提到的代码进行微小的修改。唯一要做的就是定义粒子的x
和y
坐标以及2D 256 x 256
直方图。
下面的代码提供了一个完整的例子。
#include <thrust/device_vector.h>
#include <thrust/sort.h>
#include <thrust/generate.h>
#include <thrust/adjacent_difference.h>
#include <thrust/binary_search.h>
#define SIZE (100*1024*1024) // 100 MB
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/**********************************************/
/* FUNCTION TO GENERATE RANDOM UNSIGNED CHARS */
/**********************************************/
unsigned char* big_random_block(int size) {
unsigned char *data = (unsigned char*)malloc(size);
for (int i=0; i<size; i++)
data[i] = rand();
return data;
}
/********************************/
/* GPU HISTOGRAM CALCULATION 2D */
/********************************/
__global__ void histo_kernel2(unsigned char *dev_x_coord, unsigned char *dev_y_coord, unsigned int *histo, unsigned int size) {
// --- The number of threads does not cover all the data size
int i = threadIdx.x + blockIdx.x * blockDim.x;
int offset = blockDim.x * gridDim.x;
while (i < size)
{
atomicAdd(&histo[dev_y_coord[i] * 256 + dev_x_coord[i]], 1);
i += offset;
}
}
/********/
/* MAIN */
/********/
void main(){
// --- Generating x- and y- coordinates of the particles
unsigned char *x_coord = (unsigned char*)big_random_block(SIZE);
unsigned char *y_coord = (unsigned char*)big_random_block(SIZE);
/********************/
/* CPU COMPUTATIONS */
/********************/
// --- Allocating host memory space and initializing the host-side histogram
unsigned int *histo = (unsigned int*)malloc(256 * 256 * sizeof(unsigned int));
for (int i=0; i < 256 * 256; i++) histo [i] = 0;
clock_t start_CPU, stop_CPU;
// --- Histogram calculation on the host
start_CPU = clock();
for (int i=0; i < SIZE; i++) histo[y_coord[i] * 256 + x_coord[i]]++;
stop_CPU = clock();
float elapsedTime = (float)(stop_CPU - start_CPU) / (float)CLOCKS_PER_SEC * 1000.0f;
printf("Time to generate (CPU): %3.1f ms\n", elapsedTime);
// --- Indirect check of the result
long histoCount = 0;
for (int i=0; i < 256 * 256; i++) { histoCount += histo[i]; }
printf("Histogram Sum: %ld\n", histoCount);
/********************/
/* GPU COMPUTATIONS */
/********************/
// --- Initializing the device-side data
unsigned char *dev_x_coord, *dev_y_coord;
gpuErrchk(cudaMalloc((void**)&dev_x_coord,SIZE));
gpuErrchk(cudaMalloc((void**)&dev_y_coord,SIZE));
gpuErrchk(cudaMemcpy(dev_x_coord, x_coord, SIZE, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(dev_y_coord, y_coord, SIZE, cudaMemcpyHostToDevice));
// --- Allocating device memory space for the device-side histogram
unsigned int *dev_histo;
gpuErrchk(cudaMalloc((void**)&dev_histo,256*256*sizeof(unsigned int)));
// --- GPU timing
cudaEvent_t start, stop;
gpuErrchk(cudaEventCreate(&start));
gpuErrchk(cudaEventCreate(&stop));
// --- ATOMICS
gpuErrchk(cudaEventRecord(start,0));
gpuErrchk(cudaMemset(dev_histo,0,256*256*sizeof(unsigned int)));
cudaDeviceProp prop;
gpuErrchk(cudaGetDeviceProperties(&prop,0));
int blocks = prop.multiProcessorCount;
histo_kernel2<<<blocks*2,256>>>(dev_x_coord, dev_y_coord, dev_histo, SIZE);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
gpuErrchk(cudaMemcpy(histo, dev_histo, 256 * 256 * sizeof(unsigned int),cudaMemcpyDeviceToHost));
gpuErrchk(cudaEventRecord(stop,0));
gpuErrchk(cudaEventSynchronize(stop));
gpuErrchk(cudaEventElapsedTime(&elapsedTime,start,stop));
printf("Time to generate (GPU): %3.1f ms\n", elapsedTime);
histoCount = 0;
for (int i=0; i<256 * 256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// --- Check the correctness of the results via the host
for (int i=0; i<SIZE; i++) histo[y_coord[i] * 256 + x_coord[i]]--;
for (int i=0; i<256*256; i++) {
if (histo[i] != 0) printf( "Failure at %d! Off by %d\n", i, histo[i] );
}
}