pandas
提供了按行和列索引列表查找的功能,
In [49]: index = ['a', 'b', 'c', 'd']
In [50]: columns = ['one', 'two', 'three', 'four']
In [51]: M = pandas.DataFrame(np.random.randn(4,4), index=index, columns=columns)
In [52]: M
Out[52]:
one two three four
a -0.785841 -0.538572 0.376594 1.316647
b 0.530288 -0.975547 1.063946 -1.049940
c -0.794447 -0.886721 1.794326 -0.714834
d -0.158371 0.069357 -1.003039 -0.807431
In [53]: M.lookup(index, columns) # diagonal entries
Out[53]: array([-0.78584142, -0.97554698, 1.79432641, -0.8074308 ])
我想使用相同的索引方法来设置M
的元素。我怎么能这样做?
答案 0 :(得分:18)
我不确定是否关注您,但是您是否使用DataFrame.ix
来选择/设置单个元素:
In [79]: M
Out[79]:
one two three four
a -0.277981 1.500188 -0.876751 -0.389292
b -0.705835 0.108890 -1.502786 -0.302773
c 0.880042 -0.056620 -0.550164 -0.409458
d 0.704202 0.619031 0.274018 -1.755726
In [75]: M.ix[0]
Out[75]:
one -0.277981
two 1.500188
three -0.876751
four -0.389292
Name: a
In [78]: M.ix[0,0]
Out[78]: -0.27798082190723405
In [81]: M.ix[0,0] = 1.0
In [82]: M
Out[82]:
one two three four
a 1.000000 1.500188 -0.876751 -0.389292
b -0.705835 0.108890 -1.502786 -0.302773
c 0.880042 -0.056620 -0.550164 -0.409458
d 0.704202 0.619031 0.274018 -1.755726
In [84]: M.ix[(0,1),(0,1)] = 1
In [85]: M
Out[85]:
one two three four
a 1.000000 1.000000 -0.876751 -0.389292
b 1.000000 1.000000 -1.502786 -0.302773
c 0.880042 -0.056620 -0.550164 -0.409458
d 0.704202 0.619031 0.274018 -1.755726
您还可以按索引切片:
In [98]: M.ix["a":"c","one"] = 2.0
In [99]: M
Out[99]:
one two three four
a 2.000000 1.000000 -0.876751 -0.389292
b 2.000000 1.000000 -1.502786 -0.302773
c 2.000000 -0.056620 -0.550164 -0.409458
d 0.704202 0.619031 0.274018 -1.755726
答案 1 :(得分:17)
自从这个答案写完以来已经过了多年,所以我可能会贡献一点点。通过重构pandas,尝试使用
在某个位置设置值M.iloc[index][col]
可能会提示您尝试在切片中设置值。
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
在0.21之后的pandas版本正确的" pythonic"方式现在是pandas.DataFrame.at operator
看起来像这样:
M.at[index,col] = new_value
旧版本的答案: 更多" pythonic"在旧版本中执行此操作的方法是使用pandas.DataFrame.set_value指令。请注意,此指令返回结果DataFrame。
M.set_value(index,column,new_value)
我只是想在找出可以通过.iloc或.ix方法生成的警告来源之后发布此内容。
set_value方法也适用于多索引DataFrames,方法是将索引的多个级别作为元组放入(例如用(col,subcol)替换列)